
VOLUME 115, 15 FEBRUARY 2017 ISSN 1046-2023

Image Processing for Biologists
Editors

Richard Butler and Alex Sossick



EDITOR-IN-CHIEF

Kenneth W. Adolph
University of Minnesota Medical School

Minneapolis, Minnesota, USA

EDITORS

Sun Kim
Seoul National University (SNU)

Seoul, South Korea

Christophe Lavelle
National Museum of Natural History, Paris, France

Jia Li
Imperial College London, London, UK

Michelle Peckham
University of Leeds

Leeds, UK

Nils Walter
University of Michigan, Ann Arbor, Michigan, USA

EDITORIAL BOARD

Karen Adelman

Jurg Bahler

Vytas Bankaitis

Toni Cathomen

Jonathan Chaires

David Corey

Nancy Cox

Jack E. Dixon

Erica Golemis

Allan Jacobson

Ulf Landegren

David M.J. Lilley

James Manley

Lynne Maquat

Joachim Messing

Tom Misteli

Stephen Neidle

Michael Pfaffl

Cenk Sahinalp

Thomas Schmittgen

Marc H.V. Van Regenmortel

Johannes Walter

Wei Wang

Limsoon Wong

Jerry Workman



Methods 115 (2017) 1
Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier .com/locate /ymeth
Editorial
Image Processing and Analysis for Biologists
http://dx.doi.org/10.1016/j.ymeth.2017.03.001
1046-2023/� 2017 Published by Elsevier Inc.
Over the last 30 years, biological image analysis methods have
progressed from direct observation to obtaining and quantifying
high content data using a wide range of mathematical approaches.
This rapid technological development has made computational
analysis essential for bio-imaging experiments in order to provide
insights into biological systems that are not possible in any other
way.

Few biologists would disagree with the idea that scientific
investigation requires that the methods used can be described,
shared and repeated. However, despite this philosophy, the use
of closed-source commercial software for image analysis remains
common, leading to published results obtained using unknown
methods that can only be replicated by purchasing expensive
licences for black box solutions. In addition, the lack of flexibility
in closed applications often does not allow methods to be adapted
and developed to meet the constantly changing requirements for
novel biological image analysis software. For these reasons the
papers in this special issue focus on open, scientific tools.

Advances in both super-resolution and high-throughput
imaging have led to huge volumes of image data being produced,
presenting new computational and algorithmic challenges for
extraction of meaningful biological information from these
datasets. Even for analysis of small datasets it is advantageous to
minimise the requirement for input from human operators, which
unavoidably leads to unconscious bias in the results. This has
prompted the adoption of many automated and semi-automated
approaches, the most common of which is to segment images
and detect objects for measurement [1], which often requires
methods specifically tailored to the object of interest and the type
of images used [2]. When acquiring images for quantification,
resolution is a key factor influencing the amount of information
available from biological samples, giving rise to continuing work
on methods to acquire images at high resolution [3] and to
improve image resolution by deconvolution [4].

Colocalisation analysis is commonly used to detect localisation
of proteins of interest to particular subcellular compartments [5]
or the spatial relationships between labelled objects [6]. In addi-
tion to multi-channel acquisition in 2D or 3D, the increase in avail-
able methods for imaging live samples has led to the requirement
for computational methods allowing quantification of large time
series [7]. This includes continually developing algorithms for
tracking of objects over time [8] and identification of events such
as cell division [9].

As new methods are developed and equipment for gathering
large image datasets becomes widely available, data informatics
and statistical approaches become increasingly important for
classification [10] and interpretation of biological results [11] as
well as evaluation of their validity [12]. This includes data captured
using techniques such as nuclear magnetic resonance and
ultrasound imaging which are used for both scientific and medical
purposes, producing digital images with different properties but
requiring related methods for processing [13].

Biologists should ideally have access to image analysis special-
ists who can develop and implement appropriate tools, and these
tools must be available in an open, user-friendly form. It is unreal-
istic to expect biologists to be experts in their field as well as in
microscopy, mathematics, image processing, statistical analysis
and programming. This special issue therefore attempts to present
novel algorithms and reviews of existing methods in a way that is
accessible to non-specialist biologists and provides insight into the
wide range of techniques available for image analysis.
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a b s t r a c t

Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell
imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology
research as well as at all stages of drug development. Image analysis methods are needed to extract quan-
titative information from these vast and complex data sets. The aim of this review is to provide an over-
view of available image analysis methods for live cell imaging, in particular required preprocessing image
segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances
in machine learning, especially deep learning, and computer vision provide are being discussed. This
review includes overview of the different available software packages and toolkits.

� 2017 Published by Elsevier Inc.
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1. Introduction

Starting with Antonie van Leeuwenhoek, who published his dis-
covery of bacteria, blood cells and muscle fibres in a number of let-
ters to London’s Royal Society in the late 17th century, optical
microscopy has become an indispensable tool for scientific discov-
ery. Imaging cells and tissues using methods such as automated
high-content and high-throughput microscopy have offered new
insights into biology. This review clarifies the role imaging can play
in gaining insights into biology and describes the extraction of
quantitative information that will aid in this task. Quantitative
imaging will be required at all anatomical scales ranging from
the sub-cellular to the organ level, where structure, form, organiza-
tion, and most importantly function, are essential for a complete
characterization of the organism.

In this review we will focus on the sub-cellular and the cellu-
lar scales of living organisms. The characteristic structure and
function at each scale is associated with cues manifest as bio-
molecules which are made to express near visible or visible elec-
tromagnetic energy endogenously, or are tagged appropriately to
respond to optical stimuli. Optical instrumentation will then con-
vert the expressed energy into a digital signal that will be anal-
ysed to glean structure and function for the specimen. Imaging
reveals both structure and function of a single cell or a collection
of cells.
1.1. Imaging the cell

The nucleus was the first cellular organelle to be discovered by
a microscope. Leeuwenhoek observed a ”lumen”, the nucleus, in
the red blood cells of salmon. Today, tagging or binding specific
molecules is now the preferred way to delineate the nucleus.
Although, histology has leveraged the use of hematoxylin and
eosin stains to great advantage for capturing tissue architecture,
that specific labelling technology is of limited value for live-cell
imaging. Fluorescence microscopy is resorted to localize the bind-
ing location in the chromosome of a fluorescent probe; excitation
through the leverage of fluorescence phenomena, in turn, delin-
eates the nucleus. Selected examples are shown in Fig. 1. Thus,
DAPI (4’,6-diamidino-2-phenylindole) is a popular fluorescent
stain that binds strongly to A-T nucelotide rich regions in the
DNA. A variegated and sampled landscape can be obtained by
using fluorescent in situ hybridzation (FISH) probes which localize
specific DNA and RNA level expression in the cell. The cytoskeleton
composed of the water-rich cytoplasm and various filaments is
imaged through the use of fluorescence. Phalloidin is often used
by labelling it with fluorescent analogs and then subsequently
staining actin filaments. Further emblematic of the adoption of this
approach has been the discovery of the green fluorescent protein
[1] and the wide-spread use of microscopy methods such as confo-
cal and two-photon optics that have dramatically transformed live
cell imaging. Given the leverage that the optical spectrum offers in
capturing multiple structures and functionalities (cellular mecha-
nisms and signalling), the colour revolution has spurred the
wide-spread use of imaging both for high-content and high-
throughput [2].

The desire to understand intercellular and intracellular pro-
cesses has driven the development of super-resolved fluorescent
microscopy [3,4]. To monitor organ formation or indeed the devel-
opment of an entire organism in 4D (3D + t), the concept of in toto
imaging [5,6] has been developed. With the help of advanced
biosensors [7] it is now possible to report the activation states
(e.g. conformation and phosphorylation) of endogenous proteins
with minimal perturbation. In 2005 three different groups estab-
lished Channelrhodopsin-2 (ChR2) as a tool for genetically targeted
optical remote control [8–10]. Rapidly developing optogenetics
techniques [11] now allow the fast and specific excitation and inhi-
bition of proteins in complex cellular systems. However, high-
content time lapse microscopy of living cells is still confined to
the laboratory and its use is limited to gleaning cellular structure
and function. There is a need to scale imaging experiments and
methodologies.
1.2. Large-scale imaging of the cell

The concept of high-throughput screening was invented to
address the needs of industrial and academic drug development
efforts. Fairly basic cellular model systems were used to investigate
specific molecular hypotheses. To overcome the limitations of this
approach, the concept of phenotypic screening [12] was developed.
New emerging developments in (patient derived) ex vivo cultures,
induced pluripotent stem cells (iPSC) technology, three dimensional
(3D) co-culture and organotypic systems hold the potential of
designingmore disease relevantmodel systems that will eventually
replace traditional cell based models. Horvath et al. [13] recently
published a comprehensive review that sets out the principles to
facilitate the definition and development of disease relevant assays.

Optical microscopy platforms have evolved to support the
growing demand for conducting more complex in vitro experi-
ments. Advanced high-throughput microscopy platforms as for
example the Cell Voyager 7000S (Yokogawa), Opera Phenix (Perkin
Elmer) or the IN Cell Analyzer 6000 (GE Healthcare Life Sciences)
offer the capability of acquiring three dimensional (3D) imagery
over time. As a result it is now possible to acquire time lapse three
dimensional data (3D + T) at scale. Sophisticated software tools
help to transform vast amounts of complex multi-channel imaging
data into quantitative information.

Thanks to these advances high-throughput cellular imaging is
not only used in all stages of target based drug development [15]
but is also becoming a relevant tool for investigating more funda-
mental biological questions. Experiments in vitro allow to monitor
cell fate, build artifical tumors for studying the link between cancer
and inflammation [16,17], and chart the interactions in the
microenvironment to new drugs [18–20]. While it is probably



Fig. 1. Biological image examples. These examples illustrate some of the challenges that need to be taken into account when analysing biological imaging data. (Left) shows
an image of cytoskeletal and nuclear staining of mouse 3T3 cells. Here it is challenging to assess the precise shape of each cell given the occlusion that occurs. (Middle-Left)
This image depicts the artifacts associated with phase-contrast microscopy in the form of clumping which in turn prevents the determination of colonies. While this label free
method clearly provides advantages for live cell imaging studies these artifacts make the quantitative analysis more challenging. (Middle-right, Right) These images illustrate
that it is not always possible to segment individual cells. The image on the very right shows a spheroid of MCF7 cells in a matrix. The images have been generated in
Department of Oncology at the University of Oxford.

Fig. 2. Imaging based phenotyping. A typical cellular analysis workflow is depicted. An acquired image is processed by correcting for noise and enhancing the signal. Next,
cellular objects including nuclei, vasculature, etc. are extracted from the image. If the application demands, cells are tracked and their states are monitored. Features including
shape, appearance, and context or trajectory and lineages are gleaned and models are learnt. Finally, the various features are visualized in a phenotypical feature space. This
figure also motivates the main section of this review. Image processing methods are being reviewed in Section 2. Algorithms for delineating objects and structures of interest
are reviewed in Section 3. Section 4 provides a review of cell tracking methods. The visualisation methods are being discussed in Section 6. For this illustration we used an
image out of the set BBBC015v1 provided by Ilya Ravkin, available from the Broad Bioimage Benchmark Collection published in [14].
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too early to judge if live cell imaging will have any significant role
in clinical practice, it is safe to assume that there is a growing need
for processing and analysing images of more complex 2D/3D co-
culture models at scale.
1.3. Imaging-based phenotyping

The process of extracting meaningful information from image
data (see Fig. 1) is part of an emerging field Houle and collaborators
[21] termed phenomics. It is an area of computational biology con-
cerned with the comprehensive high-dimensional measurement of
phenomes. Houle et al. [21] distinguish between two different
paradigms. The first is to take a large set of measurements at a
given point in time, which they refer to as extensive phenotyping.
In our context one could extensively characterise a given cell line
with a number of different assays. Intensive phenotyping on the
other would require characterising a given phenotype in great
detail. Imaging specific processes using video microscopy [22,23]
would fall into this category. For the purpose of illustration a
notional imaging based phenotyping workflow is shown in Fig. 2.

While the difference between intrinsic and extrinsic phenotyp-
ing is less relevant to this review, it is the notion of taking mea-
surements that is of fundamental importance. A good
measurement should be accurate, robust and precise. Additional
key elements [24] are the limit of detection, the response function
and specificity. Given that there is noise in the measurement, the
limit of detection defines the level below which the response is
not meaningful. The response function specifies the dependence
of the signal on systematic changes in experimental conditions.
Good measurements are necessary for generating reproducible
data. The choice of a specific cell segmentation algorithm can, for
example, affect the interpretation of an experiment. The systematic
analysis of various segmentation methods [25,26] documents how
measurement statistics depend on algorithm choices and parame-
ter settings.

The community of computer scientists, engineers and bioinfor-
maticians that develops and advances mathematical methods and
algorithms has grown substantially. Biological image analysis is
nowabroadlyrecognisedarea inleadinginternationalmedical imag-
ing andbioinformatics conferences. A number of challenge competi-
tions, such as the ‘‘Particle Tracking Challenge” [27], ‘‘Cell Tracking
Competition” [28] and Digital Reconstruction of Axonal and Den-
dritic Morphology Challenge (DIADEM) [29] have been initiated to
advance the application specific algorithms. Related challenge com-
petitions can be found on the grand-challenge.orgweb page.

A field which was started by a few enthusiasts (e.g. [30]) has
now matured and produces very powerful algorithms that will
continue to impact the life sciences. Thanks to fundamental
methodological advances in image analysis, signal processing,
medical imaging and computer vision the field will continue to
evolve rapidly. Examples for one such development are advances
in machine learning which will be discussed in this article. We
expect that biomedical imaging will become a core part of the life
science curriculum. Only with a certain understanding of the
underlying methods it is possible to apply these in a thoughtful
way to ensure studies produce reproducible results that ultimately
help addressing key scientific questions. There is no doubt that
microscopy has evolved from a technique of choice for producing
stunning and impressive cover images for scientific publications
to a technology that turns vast amounts of imaging data into quan-
titative information.
1.4. Purpose and outline

A number of review articles [2,31–34] have highlighted
the opportunities biomedical imaging will provide. The term



Fig. 3. Image denoising. The example shows the non-redundant interscale wavelet
thresholding method developed by Luisier and collaborators. It was specifically
developed for Poisson data and presents a less computational intensive methods to
other state of the art methods. Figure courtesy of: Florian Luisier, Biomedical
Imaging Group, EPFL, Switzerland published in [38].
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bio-image informatics evolved and is now used by some. Meijering
[35] published a very comprehensive review on cell tracking meth-
ods. Dufour et al. [36] provide an overview of assessing 3D mor-
phology. Here we strive to capture the impact more recent
developments in computer vision and machine learning will have.

Enabled by machine learning computer vision has emerged as a
key technology powering applications ranging from internet
search to autonomous driving. The way in which we develop and
design algorithms is changing dramatically. Rather than designing
such methods from first principles, advanced machine learning
techniques now allow us to learn computational models directly
from the data. We will discuss how such deep architectures can
be used to build reliable algorithms for biological imaging
applications.

The workflow shown in Fig. 2 also provides a high level motiva-
tion for overall structure of this article. The analysis of shape and
motion are the two central themes of this review. Only if we can
delineate biological targets accurately, will it be possible to extract
a set of meaningful and robust measurements. The segmentation of
objects is discussed in Section 3. Methods for cell tracking are pre-
sented in Section 4. In the light of recent methodological develop-
ments, we believe that these are the areas which will advance most
rapidly.

In many cases we cannot work on the raw images directly. Pre-
processing methods play a central role in removing image noise
and other artefacts. Given the broad range of microscopy methods,
Section 2 does not permit a comprehensive review of preprocess-
ing methods. Instead, more recent approaches for processing
label-free microscopy images will be discussed.

In Section 5 we discuss some of the available software tools.
Rather than limiting the discussion to software relevant to end
users, we also provide an overview of toolkits to be used by algo-
rithm developers. With larger data sets information visualisation
starts to play a more prominent role. In Section 6 we discuss ideas
of visualising the extracted data more effectively. Conclusions and
directions for future work are being presented in Section 7.
2. Image preprocessing methods

Shading correction, removal of image noise and the suppression
of out of focus light are perhaps the most important steps that
would need to be addressed during image preprocessing. Given
the focus of this review it is not possible to discuss the necessary
calibration procedures that should be part of experimental proto-
cols. Here we only highlight a few topics that should be taken into
account during image processing. As the illumination across the
field of view will not be uniform an explicit flat-field correction
[37] is often necessary. Weak fluorescent staining or short expo-
sure times can result in a low signal-to-noise ratio. In certain prac-
tical settings basic noise removal techniques such as median
filtering or image smoothing will provide acceptable results.

2.1. Denoising and enhancing signals

A systematic characterisation of the various different noise
sources [39] is necessary to achieve best results. More refined sig-
nal representations using wavelets [40] capable of providing multi-
scale representation of images, or signals in general, gave rise to
significant advances in de-noising methodologies. The general soft
thresholding approach introduced by Donoho [41] needs to be
mentioned in this context. Building on this approach, Luisier
et al. [38] and Boulanger and colleagues [42] developed noise
removal algorithms (see Fig. 3) that are specifically suited for
microscopy applications. Additionally, there have been many fun-
damental contributions to methods that estimate both the back-
ground and foreground using non-local and multi-scale methods
[43].

Deconvolution is an important and necessary preprocessing
step that effects co-localisation analysis and image segmentation
[39]. Wallace et al. [44] review the most common deconvolution
methods. The problem can also be posed as a regularisation
between the observed and an ideal that is modelled using the point
spread function (PSF) of the microscope. Campisi and Egiazarian
[45] present well-known taxonomy of methods that either system-
atically estimate the PSF or are blind to the exact form of the PSF.

2.2. Label-free imaging

Label free imaging methods such as phase-contrast, DIC or dark
field microscopy provide some clear advantages as they do not
require any sample preprocessing. However, processing such
images can be challenging. For example, the varying appearance
of cell boundaries under phase-contrast microscopy requires spe-
cial consideration (see also Fig. 1). Su et al. [49] demonstrate that
a physics based model allows to extract images features, so called
phase retardation features, that enable a more robust processing of
the data. An alternative is to apply machine learning techniques
(e.g. [48]) for identifying structures such as cellular boundaries.
Methods that are capable of extracting more quantitative informa-
tion from brighfield images continue to improve. Joo et al. [46]
developed a technique that can measure minute phase variations
caused by changes in refractive index and thickness inside the
specimen. Popescu and colleagues [47] propose the diffraction
phase microscopy as a new technique for quantitative phase imag-
ing of biological structures. These examples indicate that the col-
laboration between optical physicists and image analysis experts
are necessary before the full promise of these techniques can be
realised.
3. Delineating objects of interest

Digital images are represented as pixels associated with various
intensity, or brightness values. Biologists however, are interested
in objects such as cells, vesicles or tissue components such as blood
vessels or glands. Image segmentation allows the identification of
object boundaries which then can be used to quantify and analyse
various attributes associated the objects of interest.

Despite the development of many segmentation methods over
the last five decades image segmentation remains one of the most
challenging image analysis tasks [31]. Even relatively minor
changes in imaging conditions can require algorithm or parameter
re-optimisation. Firstly, segmenting cellular images requires the
identification of multiple objects in the image. Cells have heteroge-
neous shapes that are typically subject to dynamic changes. It is
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therefore difficult to define shape in the form of mathematical
models. Secondly, cell compartmentalization as well as intra- and
inter-cell variability induces non–homogeneous marker distribu-
tions within and across cells, leading to undesirable image features
such as intensity gradients. When analysing dense cell populations
it is often very hard to assign features. While many splitting crite-
ria for segmenting touching cells have been proposed they often
only hold in specific settings. Unless a concrete objective or appli-
cation context is given, the task of image segmentation is not a well
defined problem.

In certain cases pixel based similarity measures are already suf-
ficient for identifying objects of interest. One intuitive example is
the identification of DAPI stained nuclei. Generally, purely data dri-
ven approaches are not sufficient for robust object delineation.
Here, it is necessary to incorporate prior information through user
interaction or mathematical models which are either designed
manually or learnt from example data.

In many biological applications vast amounts of data are being
generated and it is not feasible to rely on user input for the purpose
of segmenting individual cells. Instead, it is necessary to design
fully automated algorithms that are robust to changes in imaging
conditions. Recent developments in computer vision and machine
learning have helped in making significant progress towards this
goal. In this review, more traditional methods are being referenced
to point out what challenges need to be overcome. The remainder
of this section focuses on more recent developments that will
greatly impact our ability of developing robust algorithms to effec-
tively process large data sets.

A discussion of traditional methods in Section 3.1 provides
some historical context. These algorithms are now core compo-
nents of most software packages (see Section 5) and are still used
in many applications. Although there is no systematic theory of
image segmentation, the concept of partitioning an image into seg-
ments by the means of clustering allows to present some of the
more recent developments in a consistent fashion [50]. Modelling
the image probabilistically is another important concept. Sec-
tion 3.3 outlines how spatial relationships between pixels in the
image can be modelled. This allows us to consider not only texture
but also membrane boundaries which play an important role for
delineating objects. Finally, we discuss some of the opportunities
the emerging body of deep learning will offer. They provide an
entirely different approach for learning computational models
directly from imaging data but require a large set of annotated
training images.
Fig. 4. Superpixels. Superpixels provide a simple and effective method of gener-
ating locally consistent patches. The SLIC superpixel method [65] is used to
illustrate the efficacy of this approach. Both images are results of the SLIC method
after being deployed on images in Fig. 1. A set of 600 superpixels segment the
images. This approach can also be used to make the processing of very large images
more efficient.
3.1. Traditional approaches

Many of the traditional image processing and computer vision
methods [51] were developed for processing and analysing binary
images. Meijering [52] provides a comprehensive review of the
development of segmentation methods for biological imaging
applications. Given that the basis for fluorescent microscopy is
the use of differently coloured labels such images can be easily
converted into binary images. At first sight, basic automated
thresholding techniques (e.g [53]) combined with suitable pre-
processing and post-processing appear to be a adequate solution.
However, touching cells, image noise, inhomogeneous staining
and uneven illumination are typical causes for segmentation
errors. The field of mathematical morphology [54] was developed
for analysing geometrical structures, based on set theory, lattice
theory, topology and random functions. The well known watershed
segmentation algorithm has been developed in this context.
Watershed segmentations have been applied with considerable
success to biomedical imaging [55–57]. The quality of watershed
segmentations depends on selected seed points as well as suitable
image pre-processing steps. Generally, relatively minor changes in
imaging conditions require further algorithm optimisation.

A recent review [58] highlights the impact active contour mod-
els continue to have on biological imaging. In general an active
contour is a curve that evolves from some initial position towards
the object of interest, a biological target. The contour evolution is
governed by an energy function, called the snake energy. While
we cannot provide a comprehensive review of the work on active
contours, it should be mentioned that the development can be split
into three broader topics. Point snakes denote the first category.
Nominally, in active contour models [59] the curve is defined on
the discrete pixel grid. The resulting representation unfortunately
contains many parameters making it difficult to achieve robust
performance. Based on the mathematical concept of implicit func-
tions the idea of geodesic snakes [60–62] follows a more principled
approach. The objective function captured by snake energy effec-
tively controls the smoothness of the resulting contour and the
model can deal with topological changes, which allows to segment
highly complex objects. Unless constrained correctly geodesic con-
tours can lead to overfitting. The optimisation process tends to be
computationally expensive. Parametric snakes introduced through
the work by Staib and Duncan [63] employ a parametric represen-
tation (e.g. B-splines) of the contour. As a result it is possible to
design very fast algorithms which effectively incorporate shape
priors. The idea of the snakuscule [64], a minuscule snake, takes
this idea to an extreme. It enforces a circular shape and can be used
for applications such as cell counting and vessel extraction. The use
of active contour models is not limited to image segmentation. By
initialising the contour on one image of a time lapse sequence and
optimising it on the subsequent image, this method has been used
effectively for cell tracking. Details will be discussed in Section 4.

3.2. Segmentation through clustering

The idea of grouping a set of pixels based on colour or local tex-
ture is a paradigm that is the basis of many image segmentation
algorithms. The most basic example is the separation of back-
ground and foreground pixels. Various forms of clustering (see
for example [66]) have been explored for generating image seg-
ments which are consistent in colour and texture. For characteris-
ing textures [67–69] and other structures [70,71] (e.g. dots of
vessels) a vast number of low level image features have been
developed. Methods that label each pixel site independently will
not produce locally consistent image segments. The concept of
superpixels addresses this problem by defining local clusters and
limiting the search regions for assigning new pixels to a given
region. One of the most successful methods proposed by Achanta
et al. [65] reliably identifies regions which adhere well to object
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boundaries and are efficient to compute. The examples shown in
Fig. 4 illustrate that additional grouping is necessary before mean-
ingful objects can be identified.

Similarities between pixel sites can be captured in form of an
affinity matrix A. The set of pixel sites V together with the matrix
can be used to define a graph G. The graph can now be cut into con-
nected components that have relatively large interior weights by
removing edges with low weights. Normalised cuts [72] segments
an image by measuring the total dissimilarity between groups of
pixels as well as the dissimilarity within groups. Cour et al. [73]
provide a formulation that takes the edge information in an image
into account. The iCut algorithm [74] illustrates how this approach
can be applied successfully to biological imaging. As images grow
in size the affinity matrices become prohibitively large. Defining
the graph on a set of superpixels instead of the original pixel grid
of the image is one approach to avoid this problem. Finally, a
method inspired from the tracking literature has also demon-
strated much practice. In [75], the graph cut algorithm is used in
the context of tracking cells from image plane to image plane.

Yet another hybrid method was proposed in [76] where several
methods were assembled to address the problem of segmentation
of large microscopy images. Level sets, the geometry-inspired cen-
troidal Voronoi tessellation (and K-Means), and local estimation of
pixel intensity and texture were deployed in tandem to create 2D
and 3D segmentations.

3.3. Probabilistic segmentation

By modelling the value at a given pixel as a random variable we
can model images probabilistically. As images contain rich struc-
ture locally, the value of a given pixel depends on it’s neighbours.
Markov Random Fields (MRFs) provide a formal framework for
modelling complex probability distributions in form of a graph.
Each node in the graph is associated with a random variable. Inter-
actions between random variables are specified through edges in
this graph. Such distributions are of often expressed in terms of
energy functions and clique potentials. Geman and Geman [77]
originally introduced a MRF for reconstructing noisy images. Since
then MRFs have been applied for a broad range of computer vision
applications including image segmentation. Determining the max-
imum a posteriori estimate of such a model is an NP-hard problem.
The originally proposed stochastic optimisation techniques are
computationally expensive and slow.

By proposing a new class of energy minimisation algorithms
based on graph cuts Boykov et al. [78,79] enabled the application
of MRFs for a broad range of computer vision and image analysis
task. This approach led not only to fast interactive segmentation
methods for medical imaging [80], it also stimulated a number of
successful segmentation methods for biological applications.

Building on the idea of graph cut based active contours [81]
Chen and collaborators [82] developed a segmentation approach
that is particularly suited by RNAi screens. Here, the information
of different fluorescent channels is combined to obtain better
object boundaries to aid image segmentation. The pattern-based
cell segmentation approach proposed by Dimopoulos et al. [83] is
fixated on the detection of membrane patterns; the approach effec-
tively segments densely packed cells in an accurate manner. Prob-
abilistic segmentation methods have been leveraged by
Mosaliganti et al. [76] to enforce separation of overlapping cells.

3.4. Learning models from image data

Methods of machine learning play a vital role in a number of
tasks including feature selection, classification and the discovery
of latent structures. More recent developments in applying deep
learning [84] to computer vision promise to have a very
fundamental impact on how we build and design algorithms for
analysing biological image data. The fact that neural networks
can be used to approximate almost any continuous function has
been known for a while [85]. This theoretical result [86] even holds
if the network consists of only a single intermediate layer between
input and output neurons. While it illustrates the universal appli-
cability of the approach, it does not provide any practical guidance
for designing neural networks for specific problems.

Recently proposed convolutional networks for object recogni-
tion [87,88] and semantic segmentation [89] not only demonstrate
that such approaches can outperform traditional methods, they
also illustrate that it is possible to learn such models directly from
raw image data. Data preprocessing, feature extraction and seg-
mentation which were considered to be different steps in a tradi-
tional image analysis pipeline are now all integrated into one
holistic computational model. Hence image analysis pipelines no
longer depend on a set of user defined features.

As layers can be fully connected these models explore a richer
set of spatial interactions across the scales when compared to tra-
ditional MRFs. The price for this level of complexity is the fact that
millions of free parameters need to be estimated from labelled
training images. One solution is to train the model on a large cor-
pus of natural images and then use transfer learning [90] to re-
target the model onto a specific data set. Further, training models
on simulated data [91] have shown extremely promising results.
Here it would be possible to utilise earlier generative models for
microscopy data [92,93].

Given the rapid development of the field, it is difficult to pro-
vide a comprehensive overview of deep learning to life science
applications. Ning et al. [94] developed a automated phenotyping
approach for C. elegans embryos obtained through DIC microscopy.
A convolutional network is used to map raw pixels into output
labels representing cell nuclei, nuclear membranes, cytoplasm
and cell walls, and extracellular medium. Ciresian and collabora-
tors [95] train a network for detecting membranes in electron
microscopy data. Using data from the ISBI 2012 EM Segmentation
Challenge they demonstrate that their approach outperforms com-
peting techniques by a large margin with respect to different error
metrics. One of the best scoring approaches in the Mitosis Detec-
tion Algorithms 2013 (AMIDA13) challenge included a convolu-
tional network based architecture [96]. Ronneberger et al. [97]
demonstrated how the same fully connected convolutional net-
works [98] can be applied towards the segmentation of electron
microscopy and differential interference contrast imagery. Simi-
larly, during the recently held CAMELYON challenge [99], which
aims to identify histology pattern that are associated with meta-
static breast cancer, many of the successful entries explored the
use of CNNs and related recurring neural networks.

3.5. Open challenges

While these most recent advances open very exciting opportu-
nities, we also need to advance methodologies that help to extract
reliable data from imperfect segmentations. Overlapping and par-
tially occluded cells will continue to cause uncertainty that even
an apparently perfect segmentation approach will not be able to
resolve. This problem will continue to confound the research com-
munity given the complications of occlusion that will arise when
3D objects are projected onto 2D imaging planes.

Mosaliganti and collaborators [76] present one approach where
constraints are imposed based on ideal separation of nuclei. Subse-
quently, an objective function is optimised to determine the neces-
sary separating plane. Another option is to discard data that does
not satisfy certain assumptions. Meaburn et al. [101] present a sys-
tematic analysis of genome reorganization events during early
tumorigenesis. Here a multi-stage classification [57] is being



Fig. 5. Accounting for uncertainty in segmentation. Nketia et al. estimate a confidence score for each of the identified candidate regions. This confidence score is then used
to generate an overall estimate. Here the approach is illustrated with the help of two simulated images. The image on the left depicts a mono culture and the one on the right a
mixed cell population. A comparison of the resulting distributions is shown below. Figure courtesy of: Thomas Nketia, Institute of Biomedical Engineering, University of
Oxford published in [100].
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applied to select a set of cells for analysis. Alternatively the inher-
ent uncertainty of image segmentation can be taken into account.
Nketia et al. [102] propose to estimate the confidence of each iden-
tified object and incorporate this confidence score in the measure-
ment statistic with the help of a kernel density estimate [103]. An
example on some simulated date is shown in Fig. 5. Further work is
necessary to establish a more robust confidence metric for the
resulting measurements.

In certain cases it is not necessary to segment the image. Arteta
[104] developed a learning based framework that is designed to
count cells in the presence of overlap. Here dot annotations are
used to capture the required input from users. This approach has
been extended to quantify Drosophila egg laying [105]. The accu-
racy of the original counting method is increased through correc-
tion of bias observed in the algorithm output.

Recently Ulmann et al. [106] also propose an interesting
approach for a segmentation-free classification of images. Here
over 900 features are being extracted from the image but only a
subset of those accounting for 98 % of the variation are used for
analysis. A linear discriminant analysis is used for classification.
The method has been tested with success on the Broad Bioimage
Benchmark Collection and data from the Human Protein Atlas
[107].

While machine learning methods enhance our general ability
for designing more robust algorithms, further work is needed to
determine what type of preprocessing is required to ensure that
these methods can be applied in a general setting. Here it might
be possible to build on a set of tools that has been developed for
processing histology images [108,109].
4. Cell tracking

Cell tracking is essential in understanding the temporal dynam-
ics of cell behaviour in time-lapse sequences. Cellular density in
time lapse sequences obtained from typical biological experiments
often tend to be high given the very closely-packed arrangement of
cells in most frames. In addition, equipment and biological limita-
tions including risk of photodamage reduce the frequency at which
images can be captured over time. Consequently, this results in
time lapse data with significantly low temporal resolution com-
pared to that of conventional video. As a result, motile cells in
the time series data seem to jump in a random fashion between
consecutive frames showing minimal spatial overlap. These arte-
facts make cell tracking more complex and challenging than con-
ventional object tracking in video [110]. The difficulties are
further compounded by sudden changes in cell morphology over
time [111].

Current methods for cell tracking build on the development of
visual tracking algorithms for more general computer vision appli-
cations [112]. They can be broadly categorized into deformable
models, state space models, and segmentation-based object associ-
ation. In Section 3.1 deformable models were discussed in the con-
text of image segmentation.

Deformable models involve a contour evolution approach, usu-
ally a level set or an active contour to obtain the boundary of an
object in the current frame by evolving the contour from the pre-
vious frame [113–116]. In practice, it involves initializing the seg-
mentation of objects in the first frame and updating in subsequent
frames. Such contour evolution models fail in applications where



72 T.A. Nketia et al. /Methods 115 (2017) 65–79
objects undergo sufficiently large displacements or show little
overlap between consecutive frames [117]. These approaches also
fail to detect cells that enter the field of view. Li et al. [115] address
this by treating new cells using a local association scheme.

State space models for tracking often employ stochastic filtering
techniques that rely on the underlying motion or appearance
model of the tracked object. In this regard, the model expects the
object to follow some assumed motion pattern but does not
require an accurate segmentation of the tracked objects. They tend
to be computationally demanding due to the large number of
hypotheses pertaining to the motion-under-scrutiny and yet allow
for complex observation models [118]. State space models are,
however, better suited to handle larger displacements [119,120].

Segmentation based object association tracking models involve
two major processes: object detection or segmentation in all
frames and the association of objects in different frames to obtain
a lineage. This allows cell tracking to be handled as two separate
tasks; detection and association. Such association methods have
been shown to be effective for cell tracking, to scale well and also
achieve high accuracy in overall cell tracking [117,121–125]. The
segmentation step varies widely depending on application or
imaging modality.

Another method that could be loosely associated with the
object association model is template matching with image regis-
tration between time points. The registration could be applied at
the pixel level [126], at feature points [127], or for entire cellular
objects [128]. The remainder of this section will focus on various
approaches used in object association models as these have been
most effective for cell tracking in time lapse phase contrast data
[125,123,124]. Magnusson et al. [129] use the Viterbi algorithm
to achieve a globally consistent cell tracks.
4.1. Learning-based cell tracking

Tracking by assignment usually involves optimization features
or objective functions which need to be adjusted for obtaining
good assignments. Such parameters could be learned from training
data by casting tracking as a learning problem [117]. Such methods
have been applied to tracking pedestrians in conventional video
with models derived from the Conditional Random Field (CRF)
[130] and HybridBoost [131] techniques. The main challenge with
learning based methods is obtaining accurate training data which
usually involves costly annotations. In this regard, a cell labelling
and active learning [132] have been applied to minimize the cost
of annotation that is required in [117].

Lou and Hamprecht [117] present a more comprehensive
learning-based formulation of the minimum cost flow theory
method proposed by Padfield et al. [123] which is purposely built
for cell tracking. The underlying model accounts for mitosis,
appearance and disappearance of cells.

The approach learns the parameters associated with tracking
events from training data to improve robustness and eliminate
parameter tweaking. The learning of parameters hence provides
a more robust approach to estimating model parameters. Such a
learning-based approach however requires ground truth training
data that contains frame-to-frame association pairs of all transition
events for all cells. In the standard frame transition events, a cell
may move or divide, and can appear or disappear from a frame.
Accounting for appearing or disappearing cells is important as cells
near the boundary of the field of view of the camera could move
out and in depending on the direction of motion of the cells. Also,
by introducing additional events merge and split, Lou et al. [117]
account for the under-segmentation and over-segmentation
errors typically observed in the detection step of closely-packed
objects.
4.2. Global object association tracking

As indicated earlier, the object association methods have shown
to be effective in time-lapse. However, the challenge of accurately
accounting for cells that leave or appear in a frame as well seeming
merges and splits over many consecutive frames still remains. To
resolve this, Bise et al. [124] proposes a global object association
model rather than the local association methods involving associ-
ation between consecutive frames only as in [123,117].

Global association methods associate objects over multiple
frames by joining multi-frame trajectories. This could be achieved
via tracklet stitching [133,134]. This involves first generating reli-
able fragments of object tracks (tracklets) and then merging these
tracklets into more complete tracks. Connecting tracklets is
achieved in [133] via the Hungarian algorithm [135] and by
dynamic programming in [136].

The global association methods mentioned above are built for
general object tracking and do not address specific cell behaviour
such as cell division. The formulation proposed by Bise et al.
[124] however accounts for division and possible cell segmentation
errors. The tracklet association problem is formulated as a
maximum-a posteriori (MAP) problem and solved by linear pro-
gramming to obtain cell trajectories and lineage trees.

4.3. Open challenges

Cell tracking methods have already enabled large scale biologi-
cal studies that were previously not possible. TheMitocheck consor-
tium [137] processed more then 190,000 time lapse movies of
fluorescently labelled HeLa cells providing records of over 19 mil-
lion cell divisions. This data was utilised to provide time resolved
profiles of RNAi induced loss-of-function phenotypes resulting
from siRNAs targeting the entire genome.

To study multi-generational differences between cerebral cor-
tex neural progenitor cells Winter et al. [138] use phase contrast
microscopy allowing image capture at a temporal resolution suffi-
cient for accurate tracking through multiple rounds of cell division
in a label-free manner. The cell tracking tool Lever [139] became
the foundation of an entire research programme.

Extending these tracking approaches for analysing complex cel-
lular behaviours is an open challenge. While the analysis of cell
cycle phase [137,140,141] has been explored, other complex phe-
nomena such as for example the various cellular events leading
to cell death or collective cell migration have not been addressed.
Another open an unexplored topic is also the multi-generational
cellular response to drug compounds.
5. Software tools

Eliceiri et al. [33] provide a comprehensive overview of all the
different software tools that are necessary for the implementation
of an image informatics workflow. Here image acquisition, storage,
analysis as well as image and data visualisation need to be taken
into account. This section focuses on freely available open-source
software tools. The following three sections provide an overview
of software packages for end users, tool kits facilitating algorithm
development and client server based environments. Open chal-
lenges and directions for future developments will be discussed
in the final section.

5.1. Supporting end users

Intuitive and well-supported software tools play a crucial role
of providing end users access to this technology. Today, users can
choose between very mature and sophisticated software tools.
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Furthermore, users also benefit from support through tutorials and
workshops which are provided by the developers themselves as
well as through initiatives such as the Euro-BioImaging available
on the website www.eurobioimaging.eu and the Global-
BioImaging project.

Undoubtedly ImageJ and the recently enhanced distribution of
the same software, Fiji [142], are the oldest and most widely used
tools for scientific image analysis. The software can be extended
with help of a large number of plug-ins ranging from cell counting
to co-localisation analysis. From the quick assessment of image
quality to the scripted analysis of smaller image data sets it can
be used for a wide range of tasks. As it is written in the language
Java it can be easily deployed on all popular operating systems.
While very versatile, some of the more advanced algorithms for
segmentation and tracking are not available. It is probably less sui-
ted for the routine analysis of large data sets.

Cellprofiler [143] has been developed to facilitate the interactive
data exploration, analysis, and classification of large biological
image sets. Originally written in MATLAB, the software is now
implemented the computer language Python and includes a num-
ber of powerful features including a range of machine learning
tools. Cellprofiler provides an open source alternative to commer-
cially available high-content image analysis software packages
such as Cellomics (ThermoFisher Scientific), Harmony (Perkin
Elmer) or IN Cell Investigator (GE Healthcare Life Sciences). As an
open source tool it provides the advantage that it can be extended
very easily. However compared to other commercial tools it is not
very well integrated with high-throughput microscopy hardware.

While Cellprofiler [144] is more geared towards 2D high-
throughput screening data, Icy [144] provides a very comprehen-
sive set of tools for the analysis of multi-channel 3D images.
Developed and maintained by the biomedical image analysis group
at the Institut Pasteur (Paris, France) it builds on a number of exist-
ing open source libraries and can also be extended through a broad
range of plugins. The ilastic [145] platform is a simple and user-
friendly tool for interactive image classification, segmentation
and analysis. Notably, it provides access to some very advanced
machine learning based algorithms for segmentation and tracking.

5.2. Supporting algorithm developers

Engineers and computer scientists rely on sophisticated soft-
ware libraries and toolkits. These software tools provide important
core capabilities which include the reading of application specific
file formats and access to previously developed technology. In
some sense they form the bases of extending the capabilities of
the software packages discussed previously.

The National Library of Medicine Insight Segmentation and Regis-
tration Toolkit (ITK) [146,147] is the most widely used open source
medical image analysis toolkit. It is designed to support N-
dimensional images. Still, working and extending the C++ based
libraries does require training. However, as the algorithms that
have been included in the toolkit have been carefully validated,
ITK made an invaluable contribution to the scientific community.
SimpleITK [148] now provides a scripting interface to the underly-
ing libraries, hence making them accessible in languages such as
Python and R. The newest release now includes access to the reg-
istration algorithms which will be of interest to a number of
groups. Farsight [149,150], which is a more specialised set of tools
for the analysis of multi-channel fluorescent microscopy images is
built directly on ITK.

Scripting languages not only provide the advantage of fast pro-
totyping, they also allow the systematic integration of well estab-
lished libraries for numerical computing, linear optimisation and
now machine learning. With the increase in data volume it will
be necessary to process data sets on dedicated compute clusters.
Python based environments allow one to make this transition. Pos-
sible performance bottlenecks can be eliminated through targeted
optimisation. Python is increasingly viewed as the lingua franca of
data analytics. It provides a great environment for developing anal-
ysis scripts that can be deployed on end user as well as specialised
compute clusters. Rather than entering into a debate whether or
not is should be used instead of statistics package based on the lan-
guage R, we argue that these two languages, which are both dis-
tributed under open source licences, complement each other.
With the Python interface of OpenCV [151] and the scikit-image
libraries [152] Python provides a very rich set of image analysis
tools. To date there is a lack of libraries that address microscopy
specific analysis solutions. The Python Microscopy Environment
(PyME) [153] is being developed to address this gap. It is targeted
to high-resolution microscopy. In addition, all the underlying soft-
ware modules provided by Cellprofiler can be accessed as Python
libraries. SimpleITK can now also be installed directly as part of
leading Python distributions. Python also provides access to popular
deep learning libraries such as TensorFlow [154,155] and Theano
[155].

5.3. Creating integrated environments

As data sets grow larger in size it is often no longer feasible to
analyse the experimental data on a personal workstation or laptop.
Environments such as OMERO [156] and Bisque [157], which were
originally developed for storing and retrieving microscopy image
data sets have now been extended to provide client–server soft-
ware the visualisation, analysis and management of microscope
images. Specific expertise and hardware is necessary for the setup
and maintenance of these environments. Currently such capabili-
ties will be limited to industrial laboratories and larger centres as
they have the capacity to maintain and customise these solutions.

5.4. Open challenges

Today, it can still be difficult to reproduce image analysis exper-
iments. A change in implementation details or parameter settings
might actually result in different results. Provenance based meth-
ods are certainly par for the course. Further, standardization will
be required to establish norms for analysis and discovery. It will
be necessary to develop publications standards that are similar
to those established for microarray analysis [158,159]. Further-
more the tools for processing large data sets need to be improved.
What is already true for the processing of sequencing data today,
will very likely become a reality for many future imaging studies.
The necessary data will have to be hosted on large databases and
will have to be processed on dedicated compute clusters. More
intuitive and user friendly interfaces will have to be developed.
In addition various analysis and visualisation capabilities will have
to be integrated. Substantial further work will be needed to
achieve this goal. But one day users who analyse their images using
their favorite tools will routinely process large image collections on
server hosted environments.
6. Information visualisation

Image analysis is only the first step in imaging studies that
results in large and complex high dimensional datasets describing
the phenomena-of-interest or the differences between biological
samples. Visualisation plays an important role in understanding
and analysing complex microscopy data. Dedicated software is
needed to effectively view and inspect 3D time-lapse data that
has been acquired in multiple channels. Segmentation and tracking
results need to be displayed in context of the original data to

http://www.eurobioimaging.eu
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support algorithm development and analysis. Furthermore visual-
isation enables the identification of interesting phenotypes or arte-
facts, and the development statistical models of cellular shape and
appearance. The effective visualisation of these datasets is crucial
for identifying possible relationships and hypothesis in the data
and choosing appropriate statistical or mathematical modelling
methods.

Imaging information contributes to building quantitative mod-
els of the cell and cellular function. Including a detailed discussion
of these methods is outside the scope of this review article. The
work of Murphy and collaborators [160] and the Virtual Cell Pro-
ject [161] serve as excellent examples for such efforts. In this con-
text the recently NIH funded 4D Nucleome project should also be
mentioned. It aims to advance our understanding of the principles
underlying nuclear organization in space and time.

6.1. Viewing complex imaging data sets

Many tools have been developed to allow efficient exploration
of complex imaging datasets from different angles. Walter et al.
[162] provide a very comprehensive and broad overview of differ-
ent visualisation methods for images. For example, Icy provides
synchronised viewers to allow inspecting different time-points or
locations of the image simultaneously [144]. Furthermore, the
results of image analysis can be overlaid on raw images which
enable validation of the analysis methods. Another useful tool for
exploring large and complex 3D imaging data is Volume3D which
utilises surface rendering to allow real-time visualisation of
gigabytes-sized 3D imaging datasets on a typical laptop or a per-
sonal computer[163]. Clear Volume [164] is a dedicated open-
source tool for visualising light sheet microscopy. The tools enables
viewing of the data during image acquisition. 3D image data can
also be streamed over the internet for remote viewing. CellProfiler
Tracer allows visualisation of time-lapse data and exploration of
the resulting cell trajectories, lineage tree as well as the progres-
sion of selected cells along time simultaneously [165]. These differ-
ent tools aim to facilitate quantification of phenotypes in separate
imaging datasets.

6.2. Shape and appearance variation

One goal of cell biology is to understand how cells adopt differ-
ent shapes and expression profiles in response to varying environ-
Fig. 6. PhenoPlots phenotypic measurements. Phenoplots of 9 phenotypic measurem
shown. The position of cells reflects their X and Y coordinates. Image derived phenotypic
more intuitive visualistion. This approach allows to visualise a set of phenotypic traits
Figure courtesy of: Heba Sailem while at Insitute of Cancer Research, London published
mental and cellular conditions. A statistical analysis of the
quantitative data derived from imaging studies is one first step
towards advancing our understanding on howmolecular processes
govern cellular morphology. Here we need to differentiate between
desciminative and generative models. The PhenoRipper software
[167] was developed in the Altschuler and Wu laboratory with
the aim to enable the rapid exploration of high-content microscopy
images. PhenoRipper permits comparison of images obtained
under different experimental conditions based on image pheno-
type similarity. Because the software analyses the images on a
set of blocks rather than individual cells the analysis does not rely
on an explicit cell segmentation method. The set of features is
selected automatically. As a result of this analysis the software will
map the data into an high-dimensional feature space and identify a
number of classes. The benefit of this approach is that it hides the
details of the machine learning procedure from the user.

Generative approaches can help to relate the features to inter-
pretable visual models. Sailem and collaborators [168] present an
approach for modelling cellular shape. Based on image derived fea-
tures they employ Gaussian mixture modelling and hierarchical
clustering for developing a graphical model that explaines how
the cross talk between Rac and Rho contribute to shape changes
in wild-type Drosophila BG-2 cells. By formulating a transport
based framework Wang et al. [169] develop a generative approach
for modelling cellular shape and appearance directly in the image
space. The transport based framework allows to address several
tasks such as discriminating nuclear chromatin patterns in cancer
cells, decoding differences in facial expressions, galaxy morpholo-
gies, as well as sub cellular protein distributions. It is for example
possible to learn a visual dictionary exemplars and then compare
the instances of this with new data points. In order to improve
the representation an appearance manifold Sing et al. [170] learn
a distance metric from labelled data. This metric is locally adaptive
to account for heterogeneity in the data. This approach allows to
analyse the heterogeneous expression patters in cell nuclei.
6.3. Visualising phenotypic structures

The development of visualisation tools to address the nature of
image-based datasets lags behind and is still largely restricted to
the traditional plotting toolbox that includes scatter plots, parallel
coordinates, and heat maps [171]. Visual analytics tools combine
different traditional visualisation methods to enable the user to
ents of the Human Bone Osteosarcoma Epithelial Cells from the U2OS cell line are
ally relevant measurements are being mapped into pictorial structures to provide a
in form of a compact illustration. Mito: mitochondria, ER: Endoplasmic Reticulum.
in [166].
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interact with the data in order to drill down or zoom up different
views of the data simultaneously [172,173]. Recently, few methods
have been developed to address the specific needs in large biolog-
ical datasets. For example, glyph SPLOMs allow efficient exploration
of the associations and dependencies between tens of variables by
representing dependency relationships as a certain number sym-
bolic categories [174].

Another interesting method is PhenoPlot that provides pictorial
elements to intuitively and quantitatively depict underlying phe-
notypic structures [166]. Such intuitive representations greatly
facilitate interpreting the information in high dimension and easily
relating it to the measured structures. The PhenoPlot representa-
tion of 9 variables describing the shape, texture, and intensity of
different organelles in a given image of Human Bone Osteosarcoma
Epithelial Cells from the U2OS cell lines [175] is shown in Fig. 6.
Taylor and Noble [176] developed an approach for the interactive
exploration of large image data sets. Here user generated measure-
ments are utilised to arrange images virtual light table. This way
the user can effectively associate images with meta data.
7. Conclusion & future directions

In recent years the field of biological imaging has grown signif-
icantly. The community has developed new approaches and tools
that have become an integrative part of biological studies. Algo-
rithms and methodologies continue to evolve. The recent advances
in machine learning and computer vision, which allow learning
capable and robust algorithms with the aid of deep learning
directly from the data, have been highlighted in this review. Rather
than setting up pipelines that utilise a number of algorithmic com-
ponents, users can now learn new or adapt pre-trained models for
certain tasks. Importantly, such an approach could reduce the
number of parameters that would need to be determined by a user.

Increasingly, it will become necessary to process very large
image data sets. Perhaps these should not be confused with the
overused term big data. However, these data sets are sufficiently
large to require dedicated server based solutions. Rather than
struggling to process increasing large data sets on their own com-
puters, users will store and process their data on dedicated com-
pute clusters. Principles from bioinformatics will have to be
adopted for allowing users to deal with such data sets in a trans-
parent fashion.

The systematic integration of quantitative image analysis with
mathematical models to obtain more biophysically relevant mea-
surements is another important new research area. For example,
Olivo-Marin and collaborators [177,178] propose an novel
approach for measuring pressure and forces in the cell. Here the
intracellular material is being represented as a 2D incompressible
fluid and this model then acts as a control parameter for solving
the classical optical flow equations. In general image derived data
could be used for providing more realistic initial conditions for a
mathematical model. In turn the underlying model could act as a
prior for the extraction of image derived measurements. It is our
contention that bioimage analysis and informatics will continue
to play a very important role in gaining insights into the function-
ing and maintenance of living cells way beyond the relatively sim-
ple observations and methods of the early pioneers like van
Leeuwenhoek.
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This review aims at providing a practical overview of the use of statistical features and associated data
science methods in bioimage informatics. To achieve a quantitative link between images and biological
concepts, one typically replaces an object coming from an image (a segmented cell or intracellular object,
a pattern of expression or localisation, even a whole image) by a vector of numbers. They range from
carefully crafted biologically relevant measurements to features learnt through deep neural networks.
This replacement allows for the use of practical algorithms for visualisation, comparison and inference,
such as the ones from machine learning or multivariate statistics. While originating mainly, for biology,
in high content screening, those methods are integral to the use of data science for the quantitative
analysis of microscopy images to gain biological insight, and they are sure to gather more interest as
the need to make sense of the increasing amount of acquired imaging data grows more pressing.
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1. Introduction

For the last couple of decades the development of increasingly
efficient fluorescence probes along with technological advances
in microscopy has led to terabytes of increasingly resolved images
being acquired across models and conditions. The discipline of
bioimage informatics (BII) is rising to develop the means to provide
a quantitative analysis of those data, and integrate them into larger
biological questions and studies, inline with a more general trend
of the life sciences toward more quantitative and integrative
approaches.
Numerous previous recent reviews, from the more specific to
the more generic, have been documenting that rise and the meth-
ods developed and used. [1] is a fairly wide review of applications
of classical computer vision techniques to biology, while [2] pro-
vide a more recent and in depth overview of bioimage informatics.
[3,4] are older reviews focusing on High Content Screening (HCS);
more recently, [5,6] are comprehensive reviews on HCS while [7]
focuses on some example of phenotype analysis. [8] is an earlier
review on the uses of machine learning on biological imaging
which focuses more specifically on supervised and unsupervised
learning. [9] provide a more methodological review and compar-
ison of segmentation methods.

Here we will more specifically focus on the next steps after
image segmentation, i.e. the computation and use of statistical
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features, at the intersection with wider data science techniques.
Answering biological questions involve performing comparison
and inference on complex objects, be it cell shape for morphology,
vesicles distributions, actin or microtubule structures, etc. . .whose
handling is not trivial: how to compute the average of a set of cell
shape? Or compare the intracellular organisation of segmented
microtubules within cells? A classical path to an answer to those
questions is to associate n real numbers to each of them, the so-
called features (i.e. equivalently send those objects to Rn), and
use the wealth of algorithms and methods available to handle such
numerical data.

Analysing images and image derived data in biology has a
long history [10], and has grown in scope and visibility in the last
thirty years, concomitant with the increased importance of digital
microscopy in the life sciences and the rise of quantitative biol-
ogy. High throughput and high content microscopy, given the
scale at which they do experiments, spanning 100s to 1000s of
conditions or more, has always been key in moving those
developments forward. They include full genome screens
[11–13], systematic investigation of genetic interactions [14,15],
or more focused investigation of the influence of cell context
[16] or of cell motility[17], the variability of cell shape [18], of
iPSC cell lines [19] or the investigation of small molecules effects
for drug developements [20–22].

But similar techniques have been used outside of HCS, to anal-
yse time lapse data [23,24], In-Situ Hybridation experiements
[25,26], cell lineages [27], perform content based image retreival
[28] or build models of protein localisation [29]. Recent advance
in microscopy, leading to the acquisition of very large images
[30,27,31], where a single image can weight 100 Gb to several
Tb, will also benefit from such large scale data analysis.

All those apparently very diverse applications have at their core
the computation of numerical features on their objects of interests,
to be used as representation. The main purpose of feature
representations is to quantitatively describe complex objects and
concepts, essential for their further quantitative analysis.
Conversely, one will only be able to access the aspects of an objects
that are described by the representation used, hence the choice of
the right features, and the right way of visualising and comparing
them corresponds to hypothesis on the data at hand and their
variabilities.

The precise nature of the study will of course determine the
objects for which features are computed, and how. Computing fea-
tures for whole images or systematic tiles of images has been done.
More often, a segmentation of the objects of interest is performed:
cells, nuclei or other intracellular objects, etc. . .That subject is
talked about elsewhere and from here on we will assume that
those objects of interests have been obtained, and focus on what
can be done with them. For more information, one could look at
the aforementioned reviews. More information on software imple-
mentations will be given Section 6.

This review aims at being accessible to non-expert in computa-
tional methods and provide an entry point to data science for
bioimage informatics to interested biologists. To separate descrip-
tions of classical data science methods for the readers less familiar
with them from their application to biology, a few ‘Method boxes’
have been separated from the main text, describing succinctly clas-
sical data science frameworks (box 1), supervised and unsuper-
vised learning (box 2) or dimensionality reduction (box 3). Box 4
provide some generic advice, in particular regarding evaluation,
that may be useful to keep in mind when starting out in data
science while Box 5 give some more details and advices on avail-
able tools. Out of necessity, some descriptions will be succinct
and technical but interested readers will be able to find more in
depth tutorial and courses online; see also Section 6 for pointers.

The plan will follow the chronology of projects using those
methods, beginning by how the features themselves are computed
(Section 2), and handled for storage and visualisation (Section 3).
We will then focus specifically on comparison in Section 4 as gen-
eric multivariate two-sample tests are an important but tricky
topic and look into wider statistical and machine learning tech-
niques for inference and interpretation in Section 5. We will finish
by a few word about the practical implementations of all those
algorithms in Section 6. A lot of the examples will come from high
content screening (HCS) studies for historical reasons, but are now
increasingly of use across bioimage informatics. From Section 3
onward, we leave the realm of images per se and will be looking
at rather generic biological data science questions of wider
relevance.

2. Numerical features computation

As said, the aim of the computation of numerical features is to
send the objects of interests to Rn, i.e. associate n real number to
each of them. Let us note first it’s only one solution (the most com-
monly used and usually the most practical), among others. For
example one could try and work directly in object space, by com-
puting an innate distance between objects, and avoid numerical
features entirely. Examples include [33], where a representation
of drosophila embryo is built with which computation are done,
or [34] which compute kernels on graphs. Those approaches were
particularly pursued for shape analysis, using for examples shape
diffeomorphisms to compute geodesics in shape space [35–37]
but will not be presented further here as they tend to be more
complex and more closely tied to particular type of data or analysis
frameworks.
Some data science framework ‘Data science’ is a recent
label that aggregates various fields and practices that aim
at analysing actual data. Classical framework includes:

Statistics. From a statistical point of view, features are con-
sidered random variables, i.e. variable whose values follow a
specific distribution, with the feature set being a multivariate
random variable, and each object under study to which a fea-
ture set is associated (a individual cell, a track, a gene) can be
seen as a particular realisation of that random variable. Sta-
tistical methods can be parametric, if they assume random
variables follow a specific distribution or non-parametric
otherwise. Descriptive statistics tries to accurately and use-
fully describe and characterise samples while statistical infer-
ence tries to infer properties of the distribution it comes from.

Machine learning. Outlined in box 2, machine learning
refers to techniques originally from artificial intelligence
concerned with learning rules from data, typically allowing
predictions from new data points. Statistics is a major ingre-
dient of most machine learning algorithms. While there is a
clear overlap with statistical inference in that both aim at
guessing properties of a dataset, machine learning (and the
more recent neural nets in particular) tend to focus on results
and efficiency, sometime at the expense of a rigorous
understanding of the methods.

Geometry. A last way to view a feature set is geometric, as
a n dimensional point cloud. Techniques using that viewpoint
include nearest neighbour or other distance and projection
based techniques. More recently, computational geometry/
computational topology is starting to be a useful data science
paradigm [32].
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2.1. Features computation strategy

One key question about statistical image features is their inter-
pretability, i.e. whether they can be directly related to biologically
relevant quantities.

A first possibility usually leading to interpretable features is to
build hand-crafted features specially adapted to the problem at
hand, drawn from the knowledge one may have on the biology at
play. One can compute the number, size, intensity, positions of
vesicles [12], the length, number and curvature of individual
microtubule [13] or simple geometrical properties of shapes ([19]
for example). They will have the advantage of being meaningful
and to directly relate to biological questions and conclusions, but
may be limited in their expressivity and prevent the discovery of
truly novel and unexpected results. Other examples include [38]
which uses the repartition of intensity around detected vesicles
and Ripley’s K-function from spatial statistics, [16] where features
specific to cell local context are defined, [39] where careful analysis
of intenssity is performed to allow for semi-quantitative interpre-
tation or [17] which define features on tracks of moving cells.

Another strategy (often used in conjunction of the first) is to
compute more complex mathematical quantities which, while
harder to relate to will express a wider range of behaviours of
the objects under study. Texture features, Fourier moments, spher-
ical harmonics, quantities derived from mathematical morphology
or fractal analysis and many more has been used. The extreme ver-
sion of this strategy are the CHARM features [40,41], which com-
pute up to 3000 quantities from the image and transforms of the
image. See also Section 6 for software implementations used to
compute those features.

Lastly among classical techniques, a ‘multi-tiered’ approach has
often been used with great success, where features computed from
the raw objects of interests are used to feed a supervised learning
(see box 2) step where carefully chosen, biologically relevant,
classes are used to represent the data. [42,12] classify nuclei into
a few classes relevant for mitosis analysis, [13] used a few cell
shape, well defined from literature to analyse yeast shape and
[18] does the same for mammalian cells. In those cases, features
derived from those classes (like the ratio of single cell in each class)
are used for further analysis. Other uses of learning are presented
Section 5.

Finally a relatively new set of techniques, evolving from older
Artificial Neural Networks, and often summarised by the term
‘deep learning’ have been rising in the last few years, with the first
applications to bioimage informatics starting to appear. A good
way to think of them and their applications so far in this context
is as supervised ‘feature learning’, although potential uses are
much bigger than that. Typically, features are learnt as the ones
which best differentiate given training labels for example. Interest-
ingly they are inherently ‘multi-tiered’ (multi layered in that case,
hence why they are called ‘deep’ network), and thus are not
entirely dissimilar to the last set of techniques. A good high level
description and review can be found in [43]. Uses in BII include
[44], which uses a Convolutional Neural Network (CNN) as a fea-
tures learning step which compare favourably to classical features
and supervised learning pipeline, [45] which uses staked autoen-
coders and transfer learning to predict mechanism of action of
small molecules or [46] which use weakly supervised CNN to per-
form joint segmentation and classification. Related works include
[47] which used CNN for cell tracking or [48] for histopathological
slide classification.
Supervised and unsupervised learning Classical machine
learning algorithms are usually classified into supervised
and unsupervised, depending on the data at hand.

Supervised. Supervised learning starts with a set of
labelled objects and their associated features and try, from
them, to infer a rule (that’s the training phase). This rule
will allow the prediction of the (unknown) label of a new
set of features (testing phase). This is done trying to min-
imise the generalisation error, i.e. limit over-fitting, which
is when one stops learning about the properties of the
generic classes the data is but an example of, and starts
learning about the peculiarities of that particular, finite,
dataset.

Unsupervised. Unsupervised learning, or clustering, aims
at guessing the structure of the data knowing only the
features, by grouping together similar objects. The most
classically used algorithm is hierarchical clustering, which
uses distances between data points to group close point
together starting with the closest ones and build tree-like
dendograms. The efficiency of those methods depends a
lot on the data themselves and how much of a ‘clustered’
structure they have and can be hard to evaluate, but can
be invaluable in data exploration, especially if little is
known a priori.

Other classical learning tasks include regression (learning
a continuous value instead of a label), semi-supervised meth-
ods, generative methods etc. . .
2.2. Feature quality control and post-processing

Importantly before any analysis and interpretation, features
quality control and preprocessing needs to be performed. This is
in part very much study and experimental design dependant and
we will limit ourselves to an overview of problems encountered
and solutions proposed.

Depending on the experimental protocol and the study, qual-
ity controls done at the level of features include checking the
heterogeneity and specificity of RNAi silencing, or controlling
for various batch effect (per well or plate for example)
[12,11,49], detecting outliers etc. . .Increasingly, an efficient and
versatile way to handle those tasks is to use supervised learning
with positive and negative controls and bootstrap resampling
(see [38] for example). Inference with hierarchical Bayesian
models is also possible [50].

Feature selection or reduction (see method box 3) is an
important preprocessing step to ensure the features used
for analysis are informative and adapted to the task. Most
classical methods and some less classical have been used.
Classical LDA [51,52,41,25] and PCA [53–55,18] are still often
used. Other approaches include [38] which used a SVM
recursive feature elimination procedure, while [56] used
genetic algorithms. [49] proposes a method based on lasso
logistic regression.

3. Storage, management and sharing of image-derived data

The computation of features is just one step in a larger pipe-
line, and soon enough, for a given project/set of experiments, a
lot of different related things have to co-exist: the images them-
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selves, but also the associated experimental metadata (reagents,
microscope settings), segmented regions of interest and corre-
sponding features, possibly training or learnt labels or other
analysis results. When adding links with others data sources,
or ontologies [57], the need for specific tools and framework
for storage and organisation, or for structured data sharing,
becomes pressing.

Several such projects have been developed in the last few
years. OMERO [58] is an open source client–server software
using the bioformat library for microsocpy image reading and
it’s assocciated data model [59]. It is centered around an data-
base for the storage of images and associated metadata, and
has recently been extended for HCS more specific metadata uses
[60]. Similar in mindset but coming from cytological slide man-
agement, Cytomine [61] focuses more on very large images.
Other similar tools include OpenBIS [62], which also include
management of proteomics or deep sequencing data and Bisque
[63]. Outside of microscopy per se, Intermine [64] is a similar
framework aiming at bringing together data from several sources
and databases.

The sharing of structured data that include images along
with the derived metadata involve the definition of a suitable
file format standard. OME-TIFF [59] is an open format which
stores images along with the expermental metadata, but
excluding analysis metadata. Attempts focusing on those
include [65] which proposes to manage experimental data using
semantically typed data hypercubes (SDCubes), combining hier-
archical data format 5 (HDF5) and extensible markup language
(XML) file types, and [66] which propose the CellH5 format,
also based on HDF5, to specifically allow the storage of
graph-like objects relations (like the lineages segmented cells
are part of).

As an alternative to a specific file format for data sharing,
several projects built websites to publish results in an accessi-
ble and searchable way and visualise imaging data. www.mi-
tocheck.org show the results of [11], sysgro.org of [13] and
[67] of [39], to name but a few. To interactively visualise
and/or publish a large number of features, [68] provides a
visual analytics framework using the NoSQL database Neo4j.
All those efforts are parts of the ‘open data’ idea, which pro-
mote easy and unrestricted data sharing [69]. Particularly for
bioimage informatics, it allow for a wider community of non
computational experts to be able to browse the data and for
data reuse, which is an established practice in data science in
general and increasingly biology in particular (used in
[70,71,44–46,72] for example).

Despite all those works, the actual sharing of large image data
sets poses logistic issues due to their size, complexity and diver-
sity. Many data sharing solutions are now available to scientists,
but few are adapted to the scale and complexity of imaging data.
One such example is the Image Data Repository (IDR [107],
http://idr-demo.openmicroscopy.org), an online, public resource
that seeks to store, integrate and serve image datasets from pub-
lished scientific studies.
Feature selection and dimensionality reduction One way to
view data in Rn is as an n dimensional point cloud. But that
point cloud is not evenly distributed in those dimensions
and often occupy a much smaller subspace. Often, some fea-
tures are uninformative, or too noisy, or redundant. It is thus
very often possible to find p dimension, with p � n, such that
the same dataset can be expressed in Rp more usefully and
with little (or controlled) loss of information.

Feature selection. Feature selection aims at selecting a sub-
set of the computed features according to some criteria, either
non-supervised (uncorrelated and with a minimal signal/noise
ratio for example), or supervised (providing the best separa-
tion of known and relevant training labels). Example are
provided in the main text; [73] provides a generic review and
[74] one more recent but focused on bioinformatics.

Manifold learning. Another set of technique tries to build
new features out of the old ones, potentially losing
interpretability along the way. Here again supervised and
non-supervised approaches exist, with respectively Linear
Discriminant Analysis (LDA) and Principal Component
Analysis (PCA) being the linear algorithms most often use
in practice (see main text). Finding generic, non-linear and
non-parametric algorithms have been an active area of
research with [75] providing a comparative review. [76] pro-
vides some perspective in comparing the various differing
algorithms.
4. Features comparison

One of the key questions asked by biology to data is to test the
difference between two conditions: is the phenotype of interest
different in condition A compared to condition B? While the statis-
tical tools to answer that question are well defined for a single
measurement, with t-test under a normality assumption and the
Kolmogorov–Smirnov (KS) test as a non-parametric test for exam-
ple, the situation is much more complex for multivariate measure-
ments. There can’t be said to exist one single accepted solution,
and many different approaches have been developed, both generic
and specifically for bioimage informatics.

Generic test proposed in statistics include extension of the KS
test [77], of rank tests [78] or based on distances and bootstrap
permutation [79]. More recently, kernel tests have been developed
[80] which have been shown to be a more general class of earlier
tests [81]. Those works are usually hard to use in practice however
as implementation can be hard to find, slow for realistic data, or
limited in the number of dimension (i.e. features) they can handle.
A rather large survey of method used in a variety of application can
be found in [82].

More specifically in bioimage informatics, a lot of different
methods have been used and proposed. For example [12] pro-
poses to break the features vector down into it’s norm, which
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can be interpreted as the amplitude of the phenotype, and the
angle, which represent the phenotype itself. [13] used two meth-
ods, one based on KS test of individual features and another
based on euclidian distance of the full vector, to differentiate
conditions which differs greatly in only one features to those
with a widespread but milder difference. [53] proposes a com-
parison of some classical methods on small molecule perturba-
tions showing that the simplest method, based on difference of
the means, perform at least as well as more complex ones.
[55] (also used in [38,72] for example) propose a supervised
learning method to compute a dissimilarity score between two
populations, by checking how well is a SVM classifier able to
distinguish between them. [54] focus on the non parametric
redistribution of phenotypes using Earth Movers Distance.
[50] propose an integrated model using hierarchical bayesian
modeling and copulas to account for the within population
variability.

In HCS more specifically, the aim is often to provide a clear
decision, where each given condition is either different or not dif-
ferent from the negative controls. A mathematically well defined
path is to use a statistical test, which provide a p-value, and use
multiple test correction [83] to set the significance threshold, to
account for the fact that for a given significance threshold, the
more tests are performed, the more false positive one will get.
Such a threshold, while useful or even necessary is usually recog-
nised as being somewhat arbitrary as phenotypes happen in a
continuum rather than as clear presence/absence. Methods
providing a finer look into the extracted data will be presented
in the next section.
Building and evaluating a data analysis pipeline Methods
evaluation. Given the breadth of techniques presented in this
review, even by limiting its scope to more traditional fea-
tures based methods, the question of methods’ assessment
and evaluation of performance, and choice of the right tool
for the right purpose is an important one. Obviously, given
the focus on quantitative analysis, each part of a data analy-
sis pipeline could and should be evaluated. Two main ways
of doing so is against a supervised ‘ground truth’, if one is
available or time can be spent annotating data, or compar-
ing with simulations, if enough simplifying assumptions
exists that some can be made. Both methods are used
within the papers cited here and generally accepted, and
have as a caveat that they only evaluate known behaviour
of the system.

Visualisations and controls. Indeed stacking algorithmic
methods one after the other until the link with the raw data
and the initial aims becomes unclear is fairly easy. Having
regular controls and visualisations enables one to check for
relevance and correct mistakes before they propagate down
an analysis pipeline.

Exploratory analysis and interpretation. In particular, during
exploratory analysis, it is customary to try a lot of methods
and parameters, potentially leading to over-fitting of data or
cherry-picking results. On top of checks and controls, biology
is an experimental science and the final answers will always
be given by an experimental validation or corroboration with
other results. . .

Reproducible research. In data science, one can consider the
code like an electronic lab book, recording everything tried
and the results obtained. Modern version control (using
github -github.com-, bitbuket -bitbucket.org or gitlab -gitlab.
com- for example) allows one to store the whole history of
changes of a project in a way that can be easily shared
privately or publicly.
5. Features analysis and interpretation

The amount of data at this point can be staggering, with up to
millions of objects having tens to hundreds or more of features,
and the methods to do data mining, i.e. used to dig up informations
from the data, are very varied indeed. We will only attempt here to
provide pointers to some classical and less classical methods and
the way they have been used in bioimage informatics.

Data visualisation in a useful and informative way is of crucial
importance in such studies. Classical plots [84] include bar plot
and box plot [85], which tend to hide the true distribution of the
data, histograms and heatmaps that show it but are less synthetic,
scatterplots to look at the dependence between two variables, and
scatter plot matrices if there is more than two. Examples of more
exotic visualisation can be found in [86]. Increasingly the ability
to generate interactive plots is becoming crucial (see Section 6
for possible implementation). Particularly in BII the ability to go
back to the image, i.e. to show the actual raw acquired image (or
the part of it) which is at the basis of the performed analysis, is
important for both quality control and illustration purposes. The
data handling frameworks presented Section 3 can be very handy
for that task.

An issue most of the classical visualisation techniques have is
their inability to usefully plot data of more than a few dimensions.
Dimensionality reduction or manifold learning are often used to
reduce data dimension to a plotable size while retaining useful
information (see Method Box 3 for more information on the tech-
niques). While PCA and LDA remain the most classical methods for
pre-processing, prior to machine learning for example (see Sec-
tion 2 and the remainer of this section), the t-SNE method [87]
and it’s variant (like [88] in biology) is specifically optimized for
boiling down a high dimensional dataset to two or three dimen-
sions, or even one [89], for plotting. More recently, methods based
on local clustering to provide a topological map of the data are
being developed, like SPADE [90] or PhenoGraph [91].

Machine learning methods are a staple of data science pipelines
and a very powerful way to try and interpret data. So called
‘phenotypic clustering’ for example refer to the use of unsuper-
vised learning to try and assign conditions or objects to groups
with similar phenotypes [13,92,14,17]. Hierarchical clustering is
the most often used method for it’s versatility and ease of interpre-
tation but by no mean the only one. A more indepth look is
provided by phenotypic profiling techniques [93], in particular
when additional information is used to compare to or annotate,
like DAVID for gene ontology enrichement [94] or STRING for
protein interaction [95,26]. While used more often earlier in a
pipeline, to provide a more interpretable view of the features when
an annotated training set is available (see Section 2), supervised
clustering is also used as an analysis tool [13,16]. [52] provide a
comparison of learning algorithm in the context of BII.

Networks, i.e. nodes connected by edges, is a very useful repre-
sentation in biology, used for interaction networks, transcription
networks, metabolic or signalling networks, etc. . .It’s also a very
common data analysis and visualisation tool. A common assump-
tion used to build networks out of multivariate features is to build
edges between similar objects. For example in [26] the gene pairs
with the 5% smallest distance in feature space are linked together,
with [92] using a similar techniques. [71] proposes a more complex
statistical method accounting for the sign of the association
between genes and [96] provides an overview of those sort of tech-
niques. Another network inference technique uses conditional
independence between features; the presence of an edge imply a
causal relationship between the two features. Starting from [97],
it has been used in [13,12,16] to provide a systemic view of feature
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dependence. [98] develops a Gaussian Graphical Model method
that includes multiple instance learning to perform a similar task.
Tools for feature extraction and analysis Here are some
more details and comments on a few selected software solu-
tions for feature computation and analysis. While very far
from exhaustive, it shows the range of solution used, from
specific to bioimage informatics like ImageJ to generic
progeamming languages.

ImageJ. ImageJ is the most well known and used tool in
bioimage informatics. It can be used to compute features
from regions of interest (ROIs) using the built-in measure-
ment tool. Various plug-ins, too numerous to list here,
exist to compute more complex features. An interesting
effort toward an integrated and generic tool to analyse
large datasets is TANGO [99], with an integrated link
to R.

Cell Profiler. The most user friendly and versatile tool for
high content analysis is arguably Cell Profiler, along with Cell
Profiler Analyst. It includes a user-friendly GUI, access to a
number of modules for processing, segmentation, feature
computation and analysis (including CHARM [41]), and tools
for annotation and evaluation. A downside, as for most inte-
grated packages, is that it could be hard to expand if one’s
problem is not handled out of the box.

Knime. Knime is an open-source data analytics platform.
Using a graphical programming framework, it can interface
with various data sources, preprocessing and analysis
algorithms or visualisations, including image analysis. It’s
an interesting solution, both versatile but without resorting
to full fledged programming.

Lower level languages. Matlab, R and Python are certainly
the most used in practice. While the learning curve for a
non-specialist is certainly steeper, they give access to a
very wide range of state-of-the art methods. R is historically
strong in statistics, Matlab is versatile but has been much
used in the image analyis community while python is
(relatively) newer but with a dedicated and fast growing
community.
Another kind of analysis, not necessarily based on statistical
features but very fruitful are generative models (see
[35,100,72,101] for a recent review). So far we were focused on
descriptive models, aiming at quantitatively describe complex
datasets for further interpretation and comparison. Generative
models aim instead (or in addition) at being able to generate
(simulate) new typical examples of the data under study. Aims
include the study of statistical variability, a more accurate and
intuitive way to describe a particular localisation or further uses
in modelling. In particular in [72] conditional generative models
of punctuate pattern knowing microtubule localisation are learnt,
showing the potential of those methods in studying the relative
sub-cellular positions of several organelles.

One of the uses of BII is to provide quantitative measure-
ments to nourish and calibrate quantitative models and simula-
tions from wider computational work. Building those using the
very high number of feature of potentially individual object or
events could be key in understanding complex biological
processes at the system level. Building and comparing networks
as described earlier goes in that direction. A more direct
attempt can be found in [102] where a pde model is build to
study cell population dynamics from siRNA treatements,
from time resovled SVN classes. Similarly, [103] aims to infer
endosomal network dynamics from muliparametric quantitaive
imaging.
6. Implementations

All the methods and algorithms presented cannot, in practice,
be separated from their implementations. Thanks to open source
code and the trend toward open science, the availability one way
or another of implementations of published computational works
is getting ever closer to being natural and expected. A short
description is given in the following section, with method box 5
providing more hands on advice.

The software classically used in BII like ImageJ [104] can be
used to compute a segmentation or pre-process images but are
not necessarily the most adapted ones for feature computation
and analysis, unless specific plugins are used, like [99]. More
specifically, CellProfiler [105] and CellProfilerAnalyst [106], modu-
lar software for high content image analysis with a user friendly
interface, or Knime (www.knime.org), a versatile data science
platform with a graphical programming interface and rich image
analysis modules, could be used instead.

But to perform those analysis, an interactive interpreted lan-
guage, such as R (r-project.org), Python (python.org) or Matlab
(mathworks.com, closed source commercial software) is typically
used, allowing for rapid prototyping and visualisation. They all
have a rich library of algorithms for image analysis and feature
computation, data mining both classical and state of the art and
interactive visualisation, each with their specificity. Python in par-
ticular, with the scipy stack (scipy.org), is rapidly growing in both
the machine learning and more applied data analysis community.
Interactive notebook environment like Jupyter (jupyter.org) is also
proving a popular data science environment allowing for code,
results and explanations to coexist in one convenient place. Thanks
to the availability of those software and the ease to share code
online, the interested reader will easily be able to find online
tutorials covering the basics (and more!) of the use of those envi-
ronments for data analysis.
7. Conclusion

BII is about using quantitative imaging to further biological
understanding, and the current explosion of data science is key
to making that link between quantitative measurements and
biological questions. Here we proposed an overview of methods
used to tackle those issues, focusing on statistical feature computa-
tion and analysis.

We saw that most data science techniques, both standard
(features selection, multivariate statistics or supervised and non-
supervised learning) as well as state of the art (feature learning
via deep learning in particular) have been applied to image based
biological data analysis. Increasingly, methods are being developed
specifically for use in biological settings. But most importantly,
taking into account the specifics of the experimental settings, both
technical and biological, as well as of the questions under study is
of course paramount.

While a lot of the works cited in the present article come from
the high content screening world as this sub-field of BII is the one
where the biggest amount of data were acquired early on, quanti-
tative data analysis techniques is sure to spread to the whole of
bioimaging, as microscopy throughput and resolution gets higher
and biological questions get more refined.
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Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The pur-
pose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is
widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution
tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration
and parametrization, while potentially facing demanding computational tasks. To make deconvolution
more accessible, we have developed a practical platform for deconvolution microscopy called
DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D micro-
scopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage
of the release of DeconvolutionLab2 to provide a complete description of the software package and its
built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution
microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov–Miller,
Richardson–Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D
microscopy images using simulated datasets and real experimental images. We distinguish the algo-
rithms in terms of image quality, performance, usability and computational requirements. Our presenta-
tion is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand
Challenge on deconvolution microscopy that was recently organized.
� 2017 The Authors. Published by Elsevier Inc. This is anopenaccess article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The widespread development of fluorescent-labeling tech-
niques has rendered fluorescent microscopy one of the most pop-
ular imaging modalities in biology. An epifluorescence (a.k.a.
widefield) microscope is indeed the simplest modality for observ-
ing cellular structures: After labelling with a fluorescent dye, the
biological specimen is illuminated at the excitation wavelength.
The fluorescence emission is used to form the image. A 3D acquisi-
tion of the cell is built as a z-stack of 2D images, by moving the
focal plane through the sample.

Unfortunately, the resolution of 3D micrographs is intrinsically
limited by the diffraction of light; structures closer than the Ray-
leigh criterion cannot be distinguished. For a popular fluorophore
(DAPI, emission wavelength k ¼ 470 nm) and for the standard
numerical aperture NA ¼ 1:4 and diffraction index ni ¼ 1:51 nm,
the Rayleigh criterion predicts that it is impossible to observe
details smaller than about 0:61 k

NA � 200 nm in the lateral sections

and 2 ni k
NA

2 � 700nm along the optical axis [1]. Thus, the resolution
is anisotropic, i.e., the resolution along the depth axis is lower than
the resolution in the lateral dimensions. Moreover, this resolution
is usually insufficient to satisfy the current demands of biological
research for the visualisation of intracellular organelles. The
impact of diffraction is perceived as a blur, where fine details are
obscured by the haze produced by out-of-focus light. The acquired
blurred image can be mathematically modeled as the result of con-
volving the observed objects with a 3D point-spread function (PSF).
This PSF is the diffraction pattern of the light that would be emitted
from an infinitesimal point-like object and collected by the micro-
scope. In other words, the PSF sums up the effects of the imaging
setup on the observations.

There are two approaches to improve the resolution: (i) chang-
ing the microscope design to improve the shape of the PSF (e.g.
confocal, multiphoton and most super-resolution microscopy
modalities), (ii) numerically inverting the blurring process to
enhance micrographs: the deconvolution. The ultimate goal of
deconvolution is to restore the original signal that was degraded
by the acquisition system (see Fig. 1). It relies on methods that
have to be carefully optimized to preserve biological information.
We present these methods in Section 3.

Deconvolution is a versatile restoration technique that has been
found useful in various contexts such as biomedical signal process-
ing, electro-encephalography, seismic signal (1D), astronomy (2D),
or biology (3D). It performs well in 1D or 2D, but its results are the
most impressive for 3D volumetric data, especially when the PSF is
large axially. In this case, 3D deconvolution has the capability to
combine lateral and axial information when restoring the original
signal.

Deconvolution has multiple advantages. It is applicable to
even the simplest optical setup, reducing financial costs and
streamlining the acquisition pipeline. In addition to the resolu-
tion improvement, indirect benefits of deconvolution are contrast
enhancement and noise reduction. As it mitigates the effect of
noise, it can be used in low-light condition. The dim excitation
light lowers bleaching probability of fluorophores and is there-
fore beneficial in terms of photo-toxicity in living cells. Not
surprisingly, deconvolution is used routinely by microscopists
and has become a popular pre-processing tool to further image-
analysis steps such as segmentation and tracking. Unfortunately,
without a proper tuning of the algorithms parameters, the
deconvolved volume can be corrupted by artifacts that might
prevent sound biological interpretation. Among such possible
degradations, the most notable ones are noise amplification,
ringing (known as Gibbs or Runge phenomenon) and aliasing
(both spatial and spectral).

The deconvolution of micrographs was first investigated by
Agard and Sedat [2]. Many variations and improvements have been
proposed since then [3–7]. Some of these ‘‘deconvolution micro-
scopy” methods led to various commercial and open-source soft-
ware implementations [8,9]. The typical cost of a commercial
package varies between USD 5000 and USD 10,000. At the time
of writing this paper, the most popular ones are: Huygens (Scien-
tific Volume Imaging); DeltaVision Deconvolution (Applied
Precision, GE Healthcare Life Science); and AutoQuant

(MediaCybernetics). Some of these commercial solutions (e.g.,
Huygens) specialize in the processing of large data and are capable
of running unattended deconvolution in batch mode [10].

Meanwhile, several open-source deconvolution solutions exist
too, often taking the form of an ImageJ

1 plugin. One of the first
such platform that was made available is the popular Deconvolu-

tionLab software developed at the Biomedical Imaging Group
(EPFL) and detailed in the present paper. Freely distributed, Decon-
volutionLab hosts various algorithms for 3D microscopy deconvo-
lution and drives them through a user-oriented interface. Other
open-source softwares also exist, including Nick Linnenbrügger’s
DeconvolutionJ, Bob Dougerthy’s Iterative Deconvolve 3D

2

which implements a deconvolution approach for the mapping of

http://imagej.nih.gov/ij/
http://www.optinav.info/Iterative-Deconvolve-3D.htm


Fig. 1. Principle of the deconvolution of a z-stackof images, presented here as the maximum-intensity projection of the volumetric data.
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acoustic sources, Piotr Wendykier’s Parallel Iterative Decon-

volution
3 which proposes four iterative algorithms, and the

MiTiV
4 project that proposes blind deconvolution software.

The deconvolution of three-dimensional data is a computa-
tionally heavy process. Fortunately, the last decades have seen
a strong increase in the general accessibility to computing power.
Without special equipment, it has now become possible to
deconvolve data of practical size 512� 512� 64ð Þ on a 8 GB
consumer-grade computer in less than a couple minutes. Thus,
the number of users having gained access to deconvolution has
grown markedly through the years, which stresses the need for
accessible and user-friendly software packages for deconvolution
microscopy. This need is heightened by the fact that many poten-
tial users are biologists or life-science students, who may lack in
computer and algorithmic literacy, so that they would have to be
educated about the different available algorithms. Among others,
the required skills address the selection of parameters, the con-
trol of computational and memory costs, and the recognition of
restoration artifacts.

In this paper, we take advantage of the release of Deconvolu-
tionLab2, the revamped sequel of DeconvolutionLab, to pro-
vide a complete description of the software and its built-in
deconvolution algorithms. In regards to the aforementioned peda-
gogical aspects, the present paper equally intends as a step toward
the education of inexperienced users.
2. DeconvolutionLab2: A Java open-source software package

Although microscope manufacturers may sometimes propose
well-integrated software packages, their solutions are often mere
black boxes. This situation prevents users to make an informed
choice on which commercial deconvolution software is the most
appropriate for their task at hand. Conversely, many deconvolution
methods have been described in the scientific literature over the
past twenty years, sometimes accompanied by open-source imple-
mentations. But even then, end users who do not master the
underlying principles of deconvolution might face difficulties in
selecting the method best suited to their needs. Moreover, aca-
demic packages meant to investigate some aspects of an algorithm
are usually poorly designed in terms of user interface and applica-
ble only to a specific class of signals.

At the Biomedical Imaging Group (EPFL), we have taken upon
ourselves to develop the freely available software package Decon-

volutionLab
5 to experiment with 3D deconvolution microscopy.

DeconvolutionLab is a software platform that hosts various algo-
rithms and drives them through a unified and user-friendly inter-
face. After ten years of experience with this package, we have
revamped it and renamed it DeconvolutionLab2. This second ver-
sion keeps the same key ingredients that made the success of the
3 h t t p s : / / s i t e s . g o o g l e . c o m / s i t e / p i o t r w e n d y k i e r / s o f t w a r e /
deconvolution/paralleliterativedeconvolution.

4 https://mitiv.univ-lyon1.fr/.
5 http://bigwww.epfl.ch/deconvolution/.
first version: Java source code, efficient FFT (fast Fourier transform),
pluggable algorithms and an accommodating user interface.
2.1. DeconvolutionLab: The original ImageJ deconvolution tool

DeconvolutionLab was initially developed for educational
purposes at EPFL. For over a decade it has been allowing students
to conduct deconvolution experiments with the most representa-
tive classical algorithms, as well as with some more recent ones
such as fast iterative soft-thresholding [11], Richardson–Lucy total
variation [12], and thresholded Landweber [13]. Nowadays, we still
train students with the help of DeconvolutionLab.

We have made DeconvolutionLab freely available since its
release as an ImageJ plugin. As ImageJ is the de facto standard
software tool of biological imaging, most biologists know how to
install DeconvolutionLab on their own and can rapidly experi-
ment with it. The package permits the deconvolution of large bio-
logical images at least as efficiently as commercial software
packages [9]. With the passing years, our contribution has also
gained popularity in several microscopic core facilities, where
one of its favorite uses is for internal training. Moreover, from an
academic perspective, DeconvolutionLab was deployed in more
than seventy-five publications for various modalities (widefield,
confocal [14], 2-photons [15], STED [16], light-sheet [14]). These
works cover a wide range of applications, including neuroscience
[15,17], osteology [16], microbiology [18], plant science [14] and
material science [19].
2.2. DeconvolutionLab2: The remasterized Java deconvolution
tool

The present paper focuses on the complete description of
DeconvolutionLab2, the sequel to DeconvolutionLab. It is a
freely accessible and open-source software package running on
Windows, Linux, and Mac OS operating systems. The package can
be linked to well-known imaging software platforms. The back-
bone of the software architecture is a library that contains the
number-crunching elements of the deconvolution task. The current
list of built-in algorithms includes:

Naive inverse filtering (NIF, Section 3.2);
Tikhonov regularization (TR, Section 3.3);
Regularized inverse filtering (RIF, Section 3.4);
Landweber (LW, Section 3.5);
Tikhonov–Miller (TM, Section 3.6);
Fast iterative soft-thresholding (FISTA, Section 3.7);
Richardson–Lucy (RL, Section 3.8);
Richardson–Lucy with total-variation regularization (RL-TV,
Section 3.9).

New algorithms are easily pluggable into the framework of
DeconvolutionLab2. The source code is written in Java 1.6, as
closely as possible to the text-book definition of the algorithms.

https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://sites.google.com/site/piotrwendykier/software/deconvolution/paralleliterativedeconvolution
https://mitiv.univ-lyon1.fr/
http://bigwww.epfl.ch/deconvolution/


Fig. 2. Visualization of the convolution of simulated tubes with a PSF defined by the Born & Wolf model.
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Inquisitive minds inclined to peruse the code will find it fosters the
understanding of deconvolution.

Our goal with DeconvolutionLab2 is to make deconvolution
broadly accessible to the community of all those who show inter-
est in this technique. To achieve such a goal, we provide a user-
friendly front-end interface that also accommodates non-experts.
Our software package is able to process large volumes on a mid-
range desktop computer, or even on a laptop computer.

To experiment with the software, we share test data on the
DeconvolutionLab2 website. These data include synthetic and
real cases to help benchmarking algorithms. DeconvolutionLab2
can act not only as a didactic tool equipped with a simulator (con-
volution and noise generator), but also as a validation module that
gives access to the signal-to-noise ratio between a ground-truth
image and the output of every algorithm.

Like DeconvolutionLab, DeconvolutionLab2 is able to pro-
cess data relevant to real biological applications. However, and
contrarily to the commercial software packages, our tools are
restricted to deconvolution alone. We intentionally apply neither
pre-processing nor postprocessing. Compared to Deconvolu-

tionLab, DeconvolutionLab2 includes new fast Fourier trans-
form (FFT) libraries (see Appendix A.1), a recordable macro for
ImageJ, new apodization functions, new padding schemes, and
new switchable constraints in the space domain.

2.2.1. Practical details
DeconvolutionLab2 is delivered as a plugin for ImageJ [20],

for Fiji [21], and for the new bio-imaging platform Icy [22]. Since
it is a Java class, it is also callable from the MATLAB command line
and runnable as a standalone application through a Java Virtual
Machine. For batch processing, we recommend calling Deconvo-

lutionLab2 from an ImageJ macro. This key feature enables one
to handle time-lapse images or multiple channels, which need to
be processed individually, in sequence.

Deconvolution is a heavy computational task in terms of run-
ning time and memory usage. In DeconvolutionLab2, we tried
to find the best tradeoff between computational efficiency and
code readability. The deconvolution is implemented in the discrete
Fourier domain, so that the most time-consuming task is the FFT.
Some iterative algorithms may require several FFT at every itera-
tion, which can consume more than nine tenth of the runtime.
Therefore, it is of utmost importance to rely on efficient FFT
libraries.
3. Deconvolution algorithms

In this section, we recall the basic principles of image formation
in fluorescence microscopy and give a brief technical description of
the algorithms implemented in DeconvolutionLab2. We focus
on the impact of the underlying models and the influence of the
parameters. For an in-depth understanding and a more complete
overview of the deconvolution field, we refer to the reviews
[3,5,6,23] that cover most of the methods described here.

3.1. Image-formation model

Fluorescence microscopes are often assumed to be shift-
invariant, which means that the response of the system does not
depend on the position in the image. Therefore, they can be char-
acterized by a PSF which approximates the distortions of the signal
in the optical system. More elaborated approximations (e.g. spa-
tially varying PSF) are described in Section 6.2). From a signal-
processing point of view, the acquisition of images is modeled as
the convolution of the fluorophore distribution x in the observed
volume with the PSF h, followed by a degradation by noise. The
convolution operation is defined at a given 3D location p 2 R3 by

ðx � hÞðpÞ ¼
Z
R3

xðrÞhðp� rÞ dr: ð1Þ

In epifluorescence microscopy, the shape of the PSF in the
image domain, shown in Fig. 2 with the Born and Wolf model
[24,25], is typically such that it produces an anisotropic blurring
of the signal. The resolution of the convolved signal is usually three
times lower in the axial direction than in the lateral plane.

From now on we consider a discretized model. We denote by
y 2 RN the observed volume in vector form, x 2 RK the underlying
fluorescence signal, and H 2 RN�K the PSF matrix defined such that
the discretization of the convolution defined in Eq. 1 writes as the
matrix multiplication Hx. Possibly, we may want to perform the
reconstruction at an output resolution that differs from the input
resolution, or to handle carefully border effects by estimating an
image x with larger size, whereby K – N.

For a circulant and shift invariant discrete PSF with K ¼ N , the
matrix–vector multiplication Hx becomes an element-wise multi-

plication in the Fourier domain: ŷ ¼ ĥ� x̂ where ŷ and x̂ are the

discrete Fourier transform coefficients of y and x, and ĥ are the
coefficients of the discrete Fourier transform of the PSF. This per-
mits efficient computation of Hx, both in terms of speed and mem-
ory requirements through the use of the fast Fourier transform
(FFT) algorithms. Every deconvolution algorithmwe present in this
paper relies on this technique.

The discrete image acquisition model is then

y ¼ Hxþ n; ð2Þ
with n 2 RN an additive noise component. The acquired images are
affected by several sources of noise, which are often modeled by
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two components. The first component is signal-dependent and
models the fluctuation of the number of photons arriving at a given
pixel. This so-called shot noise follows a Poisson distribution whose
mean depends on the intensity of the incoming light. The second
component accounts for various other distortions such as a back-
ground signal, read-out noise, or quantization noise, which are usu-
ally modeled as additive Gaussian noise. Note that in the case of
Poisson noise, the variable n depends on the data y in Eq. (2). We
decided to drop this dependency for the sake of clarity of the
notations.

The aim of deconvolution algorithms is to invert the noisy con-
volution process defined in Eq. 2, thereby producing an estimated
image ~x from the knowledge of y and H, and the assumptions about
the noise n.

3.2. Naive inverse filtering

The simplest approach to deconvolution consists in minimizing
a least-squares cost function CðxÞ that measures the similarity
between the observation y and the current estimate Hx, so that

~x ¼ argmin
x

CðxÞ ð3Þ

with CðxÞ ¼ jjy� Hxjj2: ð4Þ
We call it naive inverse filtering. It corresponds to maximum-

likelihood estimation in the presence of Gaussian noise. The solu-
tion can be computed efficiently in the Fourier domain and
amounts to the coefficient-wise division

~̂x ¼ ŷ

max ĥ; �
� � ; ð5Þ

where max denotes the element-wise maximum and � is a small
constant to avoid divisions by zero. The final solution is then

obtained by taking the inverse Fourier transform of ~̂x.
The method is parameter-free and the direct inversion in the

Fourier domain leads to fast computations. Unfortunately, the
NIF tends to amplify measurement noise, resulting in spurious
high-frequency oscillations.

3.3. Tihkonov regularization

A way to avoid the noise amplification of NIF is to add to the

cost function (4) the regularization term kxk22 to penalize high val-
ues of the solution [26]. This leads to

CðxÞ ¼ ky �Hxk2 þ kkxk22; ð6Þ
where k is a regularization parameter that balances the contribution
of the two terms. The explicit minimizer of (6) is

x ¼ HTHþ kI
� ��1

HTy; ð7Þ

where I is the identity matrix, and HT denotes the adjoint of H. As
for NIF, the solution (7) can be computed directly in the Fourier
domain. This formulation can also be interpreted as a maximum a
posteriorimodel. There, the regularization introduces prior informa-
tion about the signal to guide the estimation.

3.4. Regularized inverse filtering

Other types of regularizations than TR can be used. A popular
approach that performs well is to impose smoothness on x by
penalizing the energy of its derivative. The resulting cost function is

CðxÞ ¼ ky �Hxk2 þ kkLxk22; ð8Þ
where L is a matrix that corresponds to the discretization of a dif-
ferential operator. In deconvolutionLab2, we use the Laplacian
operator. The explicit minimizer of (8) is given by

x ¼ HTHþ kLTL
� ��1

HTy: ð9Þ

When the filtering by LTL has a whitening effect on x and k is
defined as the inverse of the noise variance, RIF amounts to Wiener
filtering [27].

3.5. Landweber

The LW algorithm minimizes the same least-squares cost func-
tion than NIF. But, instead of expressing the solution through direct
inversion, it resorts to an iterative gradient-descent approach [28].
In DeconvolutionLab2, we take advantage of the iterative nature
of LW to impose a nonnegativity constraint at each iteration. Each
update indexed by k can be written as

xðkþ1Þ ¼ PðRþÞK xðkÞ þ cHT y �HxðkÞ
� �n o

; ð10Þ

where c is a step size parameter and PðRþÞK fxg ¼ maxðx;0Þ is the

component-wise projection of x onto the set ðRþÞK .
Minimizing the energy (4) only enforces data fidelity of the

result. The consequence is that the solution at convergence of iter-
ations (10) tends to produce an over-fitting of the noise in the
input data.However, one may obtain a satisfactory tradeoff
between deconvolution and noise amplification if the algorithm
is stopped early. In fact, the number of iterations is made to act
as a pseudo regularization parameter. This phenomenon occurs
for all maximum-likelihood based algorithms.

3.6. Tikhonov–Miller

Similarly with the LW method, the TM algorithm uses iterative
gradient descent to minimize the regularized inverse filter cost (8).
The iterative procedure is

xðkþ1Þ ¼ PðRþÞK xðkÞ þ c HTy � HTHþ kLTL
� �

xðkÞ
� �n o

: ð11Þ

When iterative projections onto the set ðRþÞK are performed,
the method is sometimes referred to as iteratively constrained
Tikhonov–Miller (ICTM).

3.7. Fast iterative soft-thresholing

Alternative regularization terms to the one in (8) can be consid-
ered. In particular, sparsity constraints in the wavelet domain have
proven to yield better preservation of image details and disconti-
nuities. The associated cost function is

CðxÞ ¼ ky �Hxk2 þ kkWxk1; ð12Þ
where W represents a wavelet transform. Due to the non-
smoothness of the ‘1 norm, gradient-descent algorithms cannot
be used. However, the problem can be solved efficiently by fast iter-
ative soft-thresholding [11] with the following iterations:

zðkþ1Þ ¼ sðkÞ � cHTðHsðkÞ � yÞ ð13Þ

xðkþ1Þ ¼ WTTðWzðkþ1Þ; ckÞ; ð14Þ

pðkþ1Þ ¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pðkÞ2

q� �
ð15Þ

sðkþ1Þ ¼ xðkþ1Þ þ pðkÞ � 1
pðkþ1Þ

ðxðkþ1Þ � xðkÞÞ: ð16Þ



Table 1
Important deconvolution parameters per method.

Method Parameters Section

NIF – 3.2
TR k 3.3
RIF k 3.4
L Miter ; c 3.5
TM Miter ; c; k 3.6
FISTA Miter ; k; c 3.7
RL Miter 3.8
RL-TV Miter ; k 3.9

6 http://bigwww.epfl.ch/algorithms/psfgenerator/.
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There, c is a step size that can be determined explicitly to
ensure convergence [11], and Tð�; sÞ is a soft-thresholding opera-
tor with threshold s.

3.8. Richardson–Lucy

The RL method [29,30] is a maximum-likelihood approach, like
NIF. The difference is that RL assumes that the noise follows a Pois-
son distribution, which leads to

CðxÞ ¼ 1THx� yT logðHxÞ; ð17Þ
where the log operation is applied component-wise and
1 ¼ ð1; . . . ;1Þ 2 NN . The iterative minimization of (17) can be under-
stood as a multiplicative gradient descent and writes

xðkþ1Þ ¼ xðkÞ �HT y
HxðkÞ

� �
; ð18Þ

where the multiplication � and the division y=ðHxðkÞÞ are under-
stood to be component-wise.

Since the updates of x are multiplicative, nonnegativity is natu-
rally ensured by the algorithm for any nonnegative starting point.
As a maximum-likelihood method, the solution of RL is subject to
the same noise-amplification problem as NIF and LW. Thus, the
optimal number of iterations should be heuristically set to stop
the algorithm before convergence.

3.9. Richardson–Lucy with total-variation regularization

To counterbalance the noise amplification effect of RL, a regu-
larization term can be added to (17) [12]. The total-variation (TV)
regularizer penalizes the ‘1 norm of the gradient of the signal, with

CðxÞ ¼ 1THx� yT logðHxÞ þ kkDxk1: ð19Þ
There, D is the finite-difference matrix for first-order deriva-

tives. In [12], a differentiable approximation of the ‘1 norm is used
and the multiplicative iterations are expressed as

xðkþ1Þ ¼ xðkÞ �HT y
HxðkÞ

h i
� 1
1þ kgðkÞ ; ð20Þ

where gðkÞ is the derivative of a regularized version of the l1 norm of
DxðkÞ.

Compared to the ‘2 penalization used in (8), the ‘1 norm yields
piecewise-constant results that better preserve image
discontinuities.

4. Deconvolution in practice

4.1. Image acquisition

The preparation of samples and the design of the imaging sys-
tem are of paramount importance to a successful deconvolution.
In particular, it is critical to take into account elements of the imag-
ing system such as calibration, sampling, and noise level. These
practical issues have been well considered in the literature
[4,31]. Specifically for deconvolution, it is also recommended to
validate the acquisition and the further processing of known sam-
ples to avoid false interpretations, especially in the context of
quantitative imaging assays [32,33].

4.2. Point-spread function

The quality of the deconvolution relies on the accuracy of the
3D PSF, which is the optical signature of an (ideally infinitesimally
small) point. It is affected mostly by the objective, the medium, and
the coverslip. A PSF can be obtained either experimentally or
theoretically.

An experimental PSF can be deduced from the acquisition of the
z-stack of a sparse field of spherical beads of very small diameter
(e.g., (100 nm). Regions of interest are cut in the data centered
around several well-contrasted beads and averaged. Microscopists
generally agree that the experimental PSF captures well the
aberrations of the microscope, but that the resolution of an
experimental PSF is tied to the resolution of the acquisition. Unless
super-resolution methods are deployed, this enforces N ¼ K (see
Section 3.1).

By contrast, a theoretical PSF can be computed from a mathe-
matical model. In addition to being able to lift the restriction on
resolution, microscopists generally appreciate the convenience of
software packages like PSFGenerator

6 that allow them to tune
freely microscope parameters such as numerical aperture (NA),
wavelength, and pixelsize [25].

4.3. Setting of parameters

A few important parameters are shared by groups of deconvolu-
tion methods. In this section, we give practical hints about the
meaning and the impact of the main parameters for each group.
We provide the parameters-per-method associations in Table 1.

Regularization parameter k. When the cost function contains a
regularization term weighted by k, the value of k balances the
contribution of data fidelity and regularization. For algorithms
with Tikhonov-type regularization, higher values of k result in
smoother images. Finally, by setting k ¼ 0, TR and RIF become
equivalent to NIF, and RL-TV becomes equivalent to RL.
Number Miter of iterations. For all iterative methods, Miter puts
a cap on the number of iterations. How to set Miter follows one
of two rules: either the deconvolution method is known to
reach the desired solution at convergence, in which case Miter

has to be chosen large enough; or noise amplification happens
during convergence, in which case Miter has to be chosen small
enough so that the deconvolution procedure stops before noise
dominates. In the latter case, the choice of the appropriate Miter

has a crucial impact on the result.
Stepsize. Methods based on gradient descent rely on a stepsize
c 2 ð0;1� which determines the speed of convergence. Small
values of c encourage safe but slow convergence.

4.3.1. Ghosts and ringing
Every deconvolution algorithm presented in Section 3 relies

partly on circular convolutions computed through FFT. Compared
to space-based approaches, Fourier-based approaches reduce the
computational cost of handling a PSF that would have a wide spa-
tial support. The downside is the appearance of Fourier-related
artifacts such as ghosts and ringing.

http://bigwww.epfl.ch/algorithms/psfgenerator/
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Fig. 3. Illustration of border artifacts after a deconvolution operation on a bead placed on the top of the volume of size 128� 128� 128 pixels. The illustrations are presented
as orthogonal sections. (A) Deconvolution without artifact-cancellation processing was applied on the signal; the arrow shows the impact of ghosting. (B) Deconvolution with
Hann apodization along the axial direction. (C) Deconvolution with a zero-padding extension to 128� 128� 256ð Þ pixels (only the red surrounding of the signal will be kept).

7 http://bigwww.epfl.ch/deconvolution/.
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Data subjected to a FFT must necessarily be assumed to be peri-
odic. This implies that borders at opposite sides of the image are
implicitly abutting once periodization is taken into account. Conse-
quently, structures near the border of an image, once processed,
will spill over the opposite border, letting ghosts appear.

Data subjected to a FFT must necessarily be assumed to be ban-
dlimited. This implies that the sharp transitions of intensities
found in an image (i.e., the edges), once processed, will incur local
overshoots and undershoots of intensity. This mechanism is called
ringing. Nonnegativity constraints may help cancel this artifact,
but only with regard to undershoots, and only for those under-
shoots that would otherwise result in negative values. Nonnegativ-
ity, commonly positivity, therefore makes a lot of sense in
fluorescence microscopy.

Inconveniently, Fourier-related artifacts frequently appear, par-
ticularly in the axial direction since this direction is often sampled
to a lesser extent than the lateral ones. For instance, if a biological
cell physically extends outside of the bottom of the acquired vol-
ume and is thus virtually cropped at acquisition time, then a
reverse ghost of the cell will appear on the top part of the volume
after deconvolution. At the same time, ringing artifacts will reveal
themselves as waves in the background and as Gibbs phenomena
in the high-contrast areas.

To attenuate these artifacts, we have implemented two
countermeasures in DeconvolutionLab2: apodization and
zero-padding. Apodization consists in multiplying the input data
by a window function that gradually sets the signal to zero near
the borders of the image. Depending on the window specifics,
the central part of the data may or may not remain pristine. In
DeconvolutionLab2, we have made available the five classical
apodization functions referred to as Cosine, Hamming, Hann,
Tukey, and Welch. They can be applied independently along the
axial and the lateral directions. As shown in Fig. 3(B), apodization
succeeds in cancelling the ghost object, but also reduces the
intensity of the data.

While it modifies the data, apodization proceeds without a
change in the image dimensions. Conversely, zero-padding main-
tains the data intact but modifies the dimensions of the image by
extending its border with zero values. For practical reasons related
to the computational efficiency of the FFT, the width of the exten-
sion is generally chosen such that the size of the extended image is
highly decomposable as a product of small prime numbers. To
facilitate adherence to this constraint, DeconvolutionLab2

automatically proposes extensions to the next even number, to
the next multiple of 2 and 3, to the next multiple of 2, 3, and 5,
and to the next power of 2, independently in the axial and the lat-
eral directions. As shown in Fig. 3(C), zero-padding succeeds in
cancelling the ghost object, but does so at an increased computa-
tional cost compared to apodization.

5. Experimental illustrations

We now illustrate the performance of DeconvolutionLab2

and its built-in algorithms by restoring various types of degraded
3D images (i.e., synthetic volumes, beads, and real volumes). Visu-
alizations of the deconvolution results are provided and quantita-
tive measurements are reported when available. The data, as well
as the corresponding model of the theoretical PSF, are available
online7.

5.1. Synthetic data

We applied all DeconvolutionLab2 algorithms on a syntheti-
cally degraded volume. The ground-truth data consisted of a stack
of 128 axial views of size 512� 256 pixels depicting cellular micro-
tubules. To mimic the acquisition artifacts of classical wide-field
microscopes, blurring and noise were generated on the ground-
truth volume through the Convolution tool of Deconvolu-

tionLab2. More precisely, the 3D data was convolved with a the-
oretical PSF and a mixture of Gaussian and Poisson noise was
added to the volume.

The effect of the deconvolution algorithms is illustrated in
Figs. 4 and 5, while the quantitative measurements after deconvo-
lution are reported in Table 2. The visual and quantitative outputs
lead to similar observations.

Firstly and most obviously, the severe artifacts introduced by
the NIF algorithm lead to non-exploitable results. The introduction
of regularization (TR, RIF) enables decent deconvolution results,
but the presence of undesirable ringing artifacts still hinder correct
visualization of the imaged structure. As supported by Table 2, the
beneficial effect of deconvolution increases when classical iterative
algorithms (LW, RL, TM) are applied. However, the cost of doing so
translates into an augmentation of the required computational
resources.

Finally, the more advanced methods (FISTA, RL-TV) were also
applied to the data. Interestingly, although RL-TV is theoretically
more sophisticated than RL, the algorithm yields similar deconvo-
lution results when applied to the present data. This can be
explained by the fact that the structure of the considered object

http://bigwww.epfl.ch/deconvolution/
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Fig. 4. Orthogonal sections of the maximum intensity projection (MIP) of a degraded 3D synthetic volume after its deconvolution by DeconvolutionLab2 algorithms. From
top left to bottom right: Ground-truth volume, Degraded volume (i.e., simulated acquisition), Naive Inverse Filter, Tikhonov regularization (low regularization), Regularized
Inverse Filter (low regularization), Landweber (s ¼ 1:0, 2000 iterations), Richardson–Lucy (150 iterations), Tikhonov–Miller (low regularization, s ¼ 1:5, 150 iterations), FISTA
(low regularization, s ¼ 1:5, 50 iterations), Richardson–Lucy with TV (low regularization, 150 iterations). The data, as well as the corresponding PSF, are available online. A
non-negativity constraint was used for all algorithms. The setting of the optimal parameters for each deconvolution algorithm was performed through visual assessment.
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imposes a negligible level of regularization during deconvolution.
Indeed, the synthetic sample harbors thin filament-like structures
which are difficult to recover through a TV regularizer, since TV
tends to promote piece-wise constant surfaces. This illustrates
the fact that the efficiency of a certain deconvolution algorithm
may vary with the type of the data being processed. Thus, one can-
not straightforwardly use the results presented above as a direct
indicator of the individual performance of each deconvolution
algorithm. Moreover, depending on the data size, time constraints
and the available computational resources, some less advanced
methods may be better suited for the deconvolution task at hand.
5.2. Isolated bead

We apply several algorithms of DeconvolutionLab2 on a z-
stack called ‘‘Bead” [9]. The volume displays a single fluorescent
bead, which corresponds to a sphere with known diameter of
2.5 lm. The z-stack was acquired on a standard widefield micro-
scope (k ¼ 530 nm;NA ¼ 1:4); the lateral pixelsize is 64.5 nm and
the stepsize in the axial direction is 160 nm.

The effect of the deconvolution algorithms is illustrated in
Fig. 6, while the measurements of the full width at half maximum
(FWHM) of the bead in the lateral and axial directions after decon-
volution are reported in Table 3. We first observe that the NIF algo-
rithm is not able to recover the bead. For the RIF algorithm, the
effect of regularization on the deconvolution process becomes evi-
dent. Blurred images and overestimated dimensions are observed
when the RIF regularization factor is overly increased, while setting
it too low generates ringings. For the LW algorithm, the best results
are obtained with 64 iterations. When the number of iterations is
insufficiency, the effect of deconvolution is imperceptible. By con-
trast, using a too large number of iterations leads to high frequency
artifacts appearing near the contour of the bead. This simple data-
set thus illustrates the importance of the selection of the parame-
ters for a given deconvolution method.
5.3. Widefield data

Finally, we briefly illustrate how DeconvolutionLab2 may be
used in a practical application to efficiently deconvolve real bio-
microscopy data. We work with a 3D visualization of a C. elegans
embryo which was acquired on a standard wide-field microscope
(k ¼ 542 nm;NA ¼ 1:4); the lateral pixelsize is 64.5 nm and the
stepsize in the axial direction is 160 nm. As shown in Fig. 7, our
3Dmeasurement displays some non-desirable visual features, such
as a relatively poor contrast or an indistinguishability of certain
neighboring centrosomes.
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Fig. 5. Zooms on XY-views of a degraded synthetic volume after its deconvolution by DeconvolutionLab2 algorithms. From top left to bottom right: Ground-truth volume,
Degraded volume (i.e., simulated acquisition), Naive Inverse Filter, Regularized Inverse Filter (low regularization), Tikhonov regularization (low regularization), Landweber
(s ¼ 1:0, 2000 iterations), Richardson–Lucy (150 iterations), Tikhonov–Miller (low regularization, s ¼ 1:5, 150 iterations), FISTA (low regularization, s ¼ 1:5, 50 iterations),
Richardson–Lucy with TV (low regularization, 150 iterations). The data, as well as the corresponding PSF, are available online. The zoom corresponds to a cropping with
positions (244, 128, 238, 119) on the 64th z-slice.A non-negativity constraint was used for all algorithms. The setting of the optimal parameters for each deconvolution
algorithm was performed through visual assessment.

Table 2
Quality and computational efficiency of the DeconvolutionLab2 algorithms for the deconvolution of degraded 3D synthetic data. For comparison, the results of a widely-used
commercial software (Huygens) and L2D-A3D (the ‘‘Learn 2D, Apply 3D” method [34] that won ‘‘3D Deconvolution Microscopy” challenge) were also added into this table. To
assess the deconvolution performance, the signal-to-noise ratio (SNR), the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) were computed after an
initial normalization of the volumes in ImageJ. Indications of the computation time and the memory ratio values are reported to allow for comparison of the computational
complexity of the available algorithms. The ‘‘Required RAM” is the peak of allocated memory to run the algorithm on an input dataset of 16,000,000 voxels. The ‘‘Memory Ratio”
corresponds to the ratio between the required memory and the number of voxels of the input dataset. The deconvolution tasks were performed on a Mac OS X 2� 3:06 GHz 6-
Core Intel Xeon for all algorithms except for the Huygens software that was run on a 48-core server on Linux Red hat Entreprise

Algorithm SNR PSNR SSIM Time Required RAM Memory
[dB] [dB] [–] [s] [Mb] Ratio

NIF �75.45 �49.79 6.29e�9 7.6 258 �16:1
RIF 3.47 29.13 3.41e�2 7.0 322 �20:1
TR 2.78 28.45 2.48e�2 6.4 258 �16:1
LW 2.57 28.23 2.06e�2 2107 888 �55:5
FISTA 3.37 29.04 3.87e�2 1400 599 �37:4
TM 2.56 28.22 2.05e�2 2128 1016 �63:5
RL 3.66 29.33 3.30e�2 1661 258 �16:1
RL-TV 3.36 29.03 3.34e�2 2759 621 �38:8

Huygens (CMLE) 2.47 28.13 1.84e�2 180 n/a n/a
L2D-A3D 7.27 32.94 6.73e�2 7200 n/a n/a
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To enhance the visual condition of this measurement, we apply
three distinct deconvolution algorithms (TR, LW, RL) to it. The
results after deconvolution are shown in Fig. 7. Globally, we
observe similar effects than with the previous data sets. For all
algorithms, the deconvolution permits a notable increase of the
sharpness of the imaged structures and reduces out-of-focus blur-
ring. Moreover, the iterative algorithms (LW, RL) yield better
results than basic methods (RIF) at the cost of a more expensive
computational need.
6. Discussion: trends in deconvolution

Similarly to many inverse problems, deconvolution requires one
to express and minimize a cost function. As exemplified in Eqs. (6),
(8), (12) and (19), the common form taken by this cost function is
composed of a data-fidelity term that measures how well the
model Hx represents the data y, and a regularization function
that enforces some priors. Deconvolution methods are thus
characterized by three ingredients: (i) data-fidelity measure; (ii)
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Fig. 6. Two orthogonal sections (XY and XZ) of the volumetric data before and after deconvolution. The plots show intensity profiles, the upper plot of a panel is the lateral
profile trough the bead; the lower plot is the axial profile. The unit is lm. (A) From left to right: input image, PSF, and the result of the NIF algorithm. Plots show the intensity
profile of the input (blue line) and theoretical shape of the bead (green line). (B) Results of the RIF algorithm with various settings. From left to right: low level of
regularization (Low Reg.), medium level of regularization (Med Reg.), and high level of regularization (High reg.). (C) Results of the Landweber algorithm with various
numbers of iterations. From left to right: 4 iterations, 64 iterations, and 1024 iterations.
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Fig. 7. Orthogonal sections of the C. Elegens volume (size: 672� 712� 104 voxels). For better visualization, a Gamma correction have been applied to the images. Scale bar is
10lm. The data are available online. (A) Acquisition. (B) Tikhonov Regularized. (C) Landweber deconvolution (200 iterations). (D) Richardson Lucy deconvolution (200
iterations). Advanced iterative algorithms permit better distinction between two neighboring centrosomes.

Table 3
Lateral FWHM and axial FWHM of the bead measure on line profiles for the input image (upper row) and for various algorithms and settings.

Algorithm Settings Lateral FWHM [nm] Axial FWHM [nm]

Acquisition 2695.33 3979.46
RIF Reg: Low 2630 5909
RIF Reg: Medium 2616 4881
RIF Reg: High 2716 4900
Landweber 4 iterations 2714 4624
Landweber 64 iterations 2711 4777
Landweber 1024 iterations 2605 4449

8 http://bigwww.epfl.ch/deconvolution/challenge/.
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regularization prior; and (iii) minimization algorithm. The impact
of each block is quite independent, so that improvements can be
devised separately. Typically, one can:

upgrade the data-fidelity term by devising a more precise
image-formation model and by gaining and taking advantage
of a deeper knowledge of the statistics of the measurement
noise;
use prior-promoting regularizers that fit the object better;
deploy robuster and faster optimization schemes.

These three topics are shared by all inverse problems. Deconvo-
lution microscopy can benefit from every improvements in this
currently very active field of research.
The priors introduced by the regularizer must be chosen care-
fully to retain usefulness while avoiding the pitfall of overfitting.
During the last decade, the compressive-sensing and the sparsity
theories gave theoretical grounds to the observation that the ‘1-
based regularizers of (8) and (19) in Sections 3.7 and 3.9, respec-
tively, always perform better than the ‘2-based regularizers of
Eqs. (6) and (8) in Sections 3.3 and 3.4, respectively.

Out of a dozen of competing methods, the methods that ranked
first [34] and third [35] in the ‘‘2014 International Challenges on
3D Deconvolution Microscopy” took advantage of regularizers that
were based on recent advances in signal processing8. The authors of
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[35] bring to fruition a second-order total-variation regularizer
called a Schatten norm, while the method ‘‘Learn 2D Apply 3D” of
[34] did exploit the fact that the resolution is much better within
the lateral sections than along the axial direction. Assuming that
the structures of interest are isotropic, it learned from the lateral sec-
tions of the acquired volume a dictionary of 2D high-resolution fea-
tures that are used as priors to enhance the resolution along the axial
direction. Approaches where the priors are learned appear to be very
efficient; we surmise that the recent successes of deep neural net-
works in machine learning will soon lead to improved deconvolution
algorithms [36] in microscopy. Finally, many modern deconvolution
methods rely on state-of-the-art optimization schemes that can deal
with non-differentiable ‘1 functions, for instance on proximal algo-
rithms such as the alternating-direction method of multipliers [37].

Up to now in this paper, we have assumed that the PSF was
known, either through ancillary measurements or through model-
ing. Moreover, we have assumed spatial shift-invariance of the sys-
tems. We now present approaches that have been recently
developed to handle imaging situations in which these assump-
tions are not met.
6.1. Blind deconvolution

Blind deconvolution attempts to jointly estimate the object x
and the PSF h from the data alone, without relying on ancillary
measurements. It is a challenging, strongly ill-posed, and nonlinear
problem. As an example, among other degeneracy issues [38], it
must address that of scale, characterized by ðahÞ � ð1a xÞ ¼ h � x for
any non-vanishing a. As it turns out, setting a meaningful value
to jjhjj is highly nontrivial. Some proposed methods are explicitly
designed to overcome degeneracies (scale and others) using an
optically motivated parameterization of the PSF [39–41] or esti-
mating the PSF from a dictionary [42]. Currently, the trend fol-
lowed by all blind-deconvolution algorithms for fluorescence
microscopy is to resort to iteratively alternating between the
deconvolution and the estimation of the PSF [39–45].
9 http://bigwww.epfl.ch/thevenaz/academicfft/.
10 https://sites.google.com/site/piotrwendykier/software/jtransforms.
11 http://www.fftw.org/.
6.2. Space-varying deconvolution

The deconvolution of large micrographs faces an important
issue: in practice, the PSF varies across the field of view. In partic-
ular, a depth-varying PSF is often induced by a refractive index
mismatch between the immersion medium and the specimen. In
this case, the PSF suffers of spherical aberrations that get stronger
as the focal plan is deeper inside the sample. This effect can be
clearly seen on the Fig. 7(A) where the image is sharper at the bot-
tom where the objective is closer to the sample.

Space-varying deconvolution raises two important problems.
First, the assumption that the PSF varies across the field of view
implies that the blurring process can no longer be modeled as a
convolution. Hence, space-varying deconvolution is an oxymoron.
As a consequence, FFT-based algorithm can no longer be used.
The computational cost of space-varying deconvolution tends to
rise as the square of the number of voxels. However using some
approximations, several fast methods to model space-varying con-
volution have been proposed (see [46] for a review). In the refrac-
tive index mismatch case, as the size of the data along the depth
axis is usually much smaller than along lateral axes, a depth only
varying deblurring algorithm is much more tractable and several
methods have been proposed in that case [47–50].

The second issue raised by the space varying deconvolution is
how to estimate the PSF variation across the 3D object. With the
exception of the case of refractive index mismatch where the PSF
depth variation can be analytically known, one has to infer the PSFs
from the data in a space varying blind deconvolution algorithm. Up
to now, only one attempt [41] has been done in that direction.
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Appendix A. Implementation aspects

A.1. FFT Libraries

The algorithms that we have proposed made an extensive usage
of the fast Fourier transform (FFT). For instance, one iteration of the
Richardson–Lucy algorithm is composed of two multiplications in
the Fourier domain (74 ms), a division in the space domain
(51 ms), an application of the non-negativity constraint (6 ms),
and two FFT/FFT�1 (2’520 ms). The FFT/FFT�1 are representing
95% of the computational time of this algorithm see (Table 4).
DeconvolutionLab2 has a Java wrapper for three FFT libraries.

– AcademicFFT9. This is pure Java library running on any platform.
The source code of AcademicFFT is bundled with Deconvolu-

tionLab2. It handles arbitrary data lengths, memory permitting.
It is standalone; no external library is required.

– JTransforms10. This is the first, open-source, fast multithreaded
FFT library written in pure Java. It is bundled with Fiji and Icy,
but JTransforms is not part of the classical distribution of ImageJ.

– FFTW 2.011 [51]. FFTW is a C routine library for computing the
fast Fourier transform in several dimensions, of arbitrary input
size, and of both real and complex data. FFTW is one of the fastest
FFT library. DeconvolutionLab2 includes a wrapper for FFTW
version 2.0 and it includes pre-compiled binaries for Mac OS X
and Windows 32-bits and 64-bits.

A.2. Dissection of an algorithm

We present a complete iterative algorithm from its mathemat-
ical formula to its Java snippet. Here, we choose to detail the
Landweber algorithm Section 3.5.

We first reformulate the iteration to reduce the number of oper-
ations in the discrete Fourier domain and to limit the memory
consumption.

A.2.1. Implementation of the Landweber algorithm
The original formulation is reduced to one multiplication and

one addition in the discrete Fourier domain for every iterations.

xkþ1 ¼ xk þ cHT y �Hxk
� � ð21Þ

xkþ1 ¼ xk � cHTHxk þ cHTy ð22Þ

xkþ1 ¼ I� cHTH
� �

xk þ cHTy ð23Þ

xkþ1 ¼ Axk þ g ð24Þ
Using this expression, the variables A and g can be pre-

computed.

http://bigwww.epfl.ch/thevenaz/academicfft/
https://sites.google.com/site/piotrwendykier/software/jtransforms
http://www.fftw.org/


Table 4
Computation time for a FFT and FFT�1 for a volume of size N � N � N. This experiment
was performed on a Mac OS X 2.5 GHz Intel Core i7.

N (size) FFTW2 [ms] JTransforms [ms] AcademicFFT [ms]

32 � 32 � 32 1.5 9.8 11.5
37 � 37 � 37 13.3 30.3 17.2
56 � 56 � 56 9.6 12.8 34.8
64 � 64 � 64 17.1 23.5 38.6
74 � 74 � 74 101.2 61.8 111.0
111 � 111 � 111 353.9 189.1 324.0
128 � 128 � 128 247.4 151.9 577.9
147 � 147 � 147 347.4 243.3 620.8
223 � 223 � 223 7200.0 1615.4 4910.0
256 � 256 � 256 2937.7 1743.9 7860.0
294 � 294 � 294 3090.0 2197.7 11,200.0
446 � 446 � 446 62,200.0 46,700.0 61,100.0
512 � 512 � 512 35,000.0 25,900.0 141,000.0

40 D. Sage et al. /Methods 115 (2017) 28–41
A ¼ I� cHTH
� �

ð25Þ

g ¼ cHTy ð26Þ
A.2.2. Java snippet of Landweber
We choose the Java code of the Landweber algorithm. The iter-

ation mechanism is handled by the object controllerwhich is an
instance of the class Controller. The instance of the Java FFT
wrapper class is fft that contains two methods transform()

and inverse(). The Java classes ComplexSignal and RealSig-

nal are two classes of DeconvolutionLab2 to store complex 3D
signals and real 3D signals, respectively. The input variables are the
two RealSignal objects, input and psf and the scalar parameter
gamma which is the step parameter of the Landweber algorithm.

Landweber algorithm

// RealSignal y: this is the input volume to deconvolve
// RealSignal h: this is the PSF volume
// RealSignal x: this is the output deconvolved volume
// Operations.delta() is a high-level method to compute

(I- gamma Ht H) public RealSignal call() {ComplexSignal Y
= fft.transform(y);
ComplexSignal H = fft.transform(h);
ComplexSignal A = Operations.delta(gamma, H);
ComplexSignal G = Operations.multiplyConjugate(gamma,
H, Y);
ComplexSignal X = G.duplicate();

while(!controller.ends(X)) {X.times(A);
X.plus(G);
constraint(X);}

RealSignal x = fft.inverse(X);
return x;}
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We present a new plugin for ImageJ called DiAna, for Distance Analysis, which comes with a user-friendly
interface. DiAna proposes robust and accurate 3D segmentation for object extraction. The plugin per-
forms automated object-based co-localization and distance analysis. DiAna offers an in-depth analysis
of co-localization between objects and retrieves 3D measurements including co-localizing volumes and
surfaces of contact. It also computes the distribution of distances between objects in 3D. With DiAna,
we furthermore introduce an original method, which allows for estimating the statistical significance
of object co-localization. DiAna offers a complete and intuitive 3D image analysis tool for biologists.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Many biological and physiological studies depend on the analy-
sis of the distribution and spatial relationship between biomarkers
in a cell or tissue. Various methods, from immunodetection to
transgene-driven expression of fluorescent proteins, allow to
observe positive cells in whole specimen or tissue sections at the
histological level, or to detect protein sub-cellular localization at
the cellular level. The 3D-organization and relationship of these
biomarkers can be investigated using fluorescence microscopy
techniques that allow optical sectioning, such as confocal micro-
scopy or multiphoton microscopy. These should be combined with
appropriate image analysis methods. Biologists often investigate
the spatial overlap of pairs of biomolecules in a cell or in a
sub-cellular compartment by means of co-localization analysis,
before inferring biological interaction and drawing functional
conclusions.

Co-localization analysis can be carried out using two different,
complementary methods: a pixel based approach [1–2] or an
object-based approach [3–5], as well as a combination of the two
approaches [6]. These methods have been reviewed in detail
[5,7–8].

In the pixel-based approach, the linear relationship between a
pair of biomolecules is calculated statistically between two fluores-
cent channels [2,9] without taking into account the positional
information. Statistical significance of this correlation coefficient
may be ensured by computing co-localization after scrambling
pixel coordinates [10] or by shifting images pixel wise [11].
Pixel-based approaches are included in most commercially avail-
able image analysis softwares because they are easy to implement.
However, co-localization analysis by pixel-based approaches is
affected by the inherent noise of fluorescent images and thus not
always applicable [5,8]. Furthermore, pixel-based approaches do
not give information about the spatial relationship between
objects.

In the object-based approach, spatial information is used to
quantify the degree of co-localization between objects in the
image. It is thus indispensable to perform segmentation prior to
co-localization analysis in order to identify and delineate the
objects of interest. Intensity thresholding is a simple method, but
its easiness comes with limitations as the threshold is globally
applied to the whole image. Recently, more sophisticated 3D, local
segmentation methods have been developed [12,13], including
spot segmentation and iterative thresholding, which we describe
in this study.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2016.11.016&domain=pdf
http://dx.doi.org/10.1016/j.ymeth.2016.11.016
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The segmentation allows determining the volume that an object
occupies in the 3D space as well as the localisation of the geomet-
rical centroid or centre of mass of the object. The degree of co-
localization can then be calculated in different ways, depending
on the optical resolution limit and the size of objects investigated.
In one approach co-localization is detected if the distance between
the centres of the objects in two fluorescent channels is lower than
image resolution. In another approach, co-localization can be
inferred if the centre of one object falls into the volume occupied
by the other object. These two paradigms are used in the JACOP
plugin from ImageJ [5]. More recently, a plugin for object-based
co-localization analysis has been implemented in the software
Icy [8,14], In this approach, a spherical region is computed around
the object centre, and co-localization is deduced if the centre of
another object falls into this spherical region. Several drawbacks
are inherent to the aforementioned approaches. Indeed, the object
position determined by its centroid or centre of mass is not suffi-
cient to fully represent the object. Furthermore, no information,
neither on the extent of co-localization for each object, nor on
the property of the co-localizing objects (such as intensity or vol-
ume) can be obtained.

Here, we first summarize the critical steps for optimized image
acquisition and present a new plugin, DiAna -for Distance Analysis.
This plugin allows to segment the objects as well as to perform in-
depth analysis of co-localization and distance between objects. The
applicability of the various tools provided by DiAna is illustrated
with images of neuronal synaptic markers, since they are objects
with known co-localization patterns. The analysis of those pre-
and post-synaptic elements that form a synapse is representative
of the sub-cellular co-localization analysis which can be performed
with DiAna and can be transferred to any kind of biological
structures.
2. Material and methods

2.1. Animal care

Animal care was conducted in accordance with standard ethical
guidelines (NIH publication No. 85-23, revised 1985 and European
Committee Guidelines on the Care and Use of Laboratory Animals
86/609/EEC), and the experiments were approved by the local ethic
committee. Male mice weighing 22–24 gm were housed 5 per cage
and acclimatized to laboratory conditions (12 h light/dark cycle,
21 ± 1 �C room temperature) with ad libitum access to food and
water. VGLUT1-venus knock-in mice express the Vesicular GLUta-
mate Transporter 1 (VGLUT1) fused to the fluorescent protein
Venus under VGLUT1 endogenous promoter [15].

2.2. Sample preparation

Mice brains were fixed by intracardiac perfusion of 4%
paraformaldehyde in 0.1 M NA2HPO4/NaH2/PO4 (phosphate buffer,
PBS), pH 7.4. Brains were dissected and post-fixed overnight
at 4 �C. Coronal sections of 50 lm thickness were cut with a
vibratome (Leica).

2.3. Immunofluorescence

Sections were permeabilized for 30 min in PBS containing 0.1%
Triton X-100 and 3% bovine serum albumin (BSA). The sections
were incubated with the primary antibody in PBS with 3% BSA
overnight at 4 �C. The antibodies used were mouse monoclonal
directed against synaptophysin (1/1000, Sigma), mouse mono-
clonal directed against bassoon (1/1000, Stressgene), rabbit poly-
clonal directed against tyrosine hydroxylase (1/1000, Sigma).
Following three washing steps of 15 min with PBS, secondary anti-
body conjugated with the fluorochrome alexa-561 or alexa-488
directed against either mouse or rabbit (1/500, Invitrogen) was
incubated in PBS with 3% BSA for 2 h at room temperature. After
washing, sections were rinsed before mounting in Prolong Gold.
2.4. Confocal image acquisition and deconvolution

Images stacks were taken with a Confocal Laser Scanning
Microscope (TCS SP5, Leica Microsystems, Germany) equipped
with a 1.4 NA objective (oil immersion, Leica) with pinhole aper-
ture set to 1 Airy Unit, pixel size of 60 nm and z-step of 200 nm.
Excitation wavelength was 488, 514 or 561, and emission range
was 500–550, 525–540 or 570–620 nm, for detection of alexa-
488, venus or alexa-561, respectively. Laser intensity and photo-
multiplier tube gain were set so the image occupies the full
dynamic range of the detector. Deconvolution was performed
using an experimental Point Spread Function obtained from fluo-
rescent beads and Maximum Likelihood Estimation algorithm
(Huygens software, Scientific Volume Imaging, Netherlands). 150
iterations were applied in classical mode, background intensity
was averaged from the voxels with lowest intensity, and signal
to noise ratio values were set to a value of 15.
2.5. Segmentation

Three segmentation procedures are implemented in the plugin.
The first one is global intensity thresholding of the image. The sec-
ond one is based on spot segmentation [16]. Local maxima are
computed in the image, and a user-defined threshold allows select-
ing the local maxima belonging to objects. Then the 3D radial dis-
tribution of the voxel intensities around each local maximum is
computed and a threshold is estimated for the border of each
object. When the border intensity threshold has been found, the
voxels around the local maximum are examined and successively
included in the segmented object through the following algorithm:
each 3D neighbour voxel is examined and included in the object if
1: their intensity is above the threshold 2: if their intensity is lower
than the voxel previously added to the object 3: if the other neigh-
bours would be added to the object as well. The third segmentation
procedure is based on an iterative thresholding process, it is a sim-
plified version of the algorithm published by Gul-Mohammed et al.
[17], and is based on the idea of max-trees and MSER technique
[18,19]. An interval of volumes is fixed and the image will undergo
thresholding at each possible threshold and segmented objects
having a volume in the defined range will be extracted from the
image. The extracted objects are then organized into a hierarchy.
Since a same object can be extracted with different thresholds,
the corresponding extracted objects will be stored in different
branches of the hierarchy. In case an object will split into two
objects at higher threshold, a branch division will be created. Then
on all final branches, corresponding to higher thresholds, the
thresholds yielding to most stable objects, in term of volume, will
be computed and the corresponding object will be displayed as the
best object on this branch, all other instances of this object will
then be discarded.

Unless stated differently, segmentation was performed in 3D
using the spot segmentation procedure using the following param-
eters: Maxima detection: radius in xy-axis = 4, in z-axis = 3, noise
parameter set to zero; Threshold for maxima selection was set to
5000; Parameters for Gaussian fit and threshold calculation were
Radius maximum = 10, S.D. value = 1.5.

The validation of the segmentation was estimated by calcula-
tion of F-measure. The accuracy was classically measured by
F = 2 ⁄ (Precision ⁄ Recall)/(Precision + Recall). Precision and Recall
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are estimates of false positives and false negatives rate,
respectively.

2.6. Distance analysis

Distance analyses are based on classical euclidean distance
computation. We implemented centre-to-centre distances,
centre-to-edge distances and edge-to-edge distances. In order to
be computationally efficient the objects are defined as the list of
the voxels comprising the object. For edge-to-edge distance analy-
sis, the list of contour voxels are extracted and put into a KD-tree
for efficient distance computation [20]. The edge-to-edge distance
is hence the smallest distance between the two objects, and will be
equal to 0 if the two objects intersect. The closest objects are also
computed using a KD-tree approach for efficiency.
2.7. Co-localization and contact surface analysis

The computation of co-localized voxels is based on the analysis
of the corresponding labeled images of the objects [21]. The object
1 is labeled with values 1 in the first image and the object 2 with
values 2 in the second image, the two images are then summed
up. The number of voxels having a value 3 will hence correspond
to the number of co-localized voxels between the two objects.
From two non-co-localized objects we implemented a contact sur-
face computation. We define a minimum distance between the
borders of the two objects and compute the number of border vox-
els from one object having border voxels from the other object
below the defined distance.
2.8. Statistical computation

In order to compute robust co-localization analysis, we need to
assess the statistical significance of the co-localization. Based on
the idea of the randomization of pixels described by Costes, we
carry out a randomization of object’s positions. A new position is
randomly assigned to the objects, while ensuring the objects
remain in the surrounding structure and do not intersect with
other objects. Based on this randomization we used the framework
defined by Andrey et al. [22] to define an index describing the sta-
tistical significance of the co-localization. We first compute the
cumulated distribution function (cdf) of all distances between
the centres of objects of the first channel to the centre of the clos-
est object in the second channel for the observed data. We then
compute the same cdf for n randomized data and rank the
observed data among the n randomized data. For a 5% interval, if
the observed data falls into the first or last 2.5% of the randomized
Fig. 1. Principles of the segmentation procedures performed by the plugin DiAna. A. Det
procedure. A1. In noisy images, the ‘‘noise” parameter allows the local maxima outside
several maxima within the same object. A bigger radius (3 � 3) ensures minimal distance
The maxima detection is more robust in deconvolved or properly noise-filtered images. A
maxima belonging to the objects. A4. Result of the spot segmentation further explained
shown in A. B2. 3D radial distribution of the intensity centred to the maxima is compu
sphere. It is advised that it is bigger than the largest object expected in the image. B3.
applied to the standard deviation of the Gaussian curve, which sets the size of a horizon
object). Factors of 1.5 and 2 will cover 86.6 and 95.4% of the Gaussian curve, respectively
segmentation of the object. B4. The procedure allows finding a specific threshold for obj
the segmented object through an algorithm with three criteria of acceptance: The first c
second criterion is that their intensity should be lower than the intensity of the voxels pr
in B5. The third criterion is that the voxel is included on the condition that neighbou
extruding from the object as shown in B6. C. Workflow of the iterative segmentation m
high intensity thresholds, the objects become isolated and decrease in size. The segme
hierarchy. C2. The selected objects are classified in a hierarchy showing the object separat
isolated it is stored in a new branch in the hierarchy. The final branches contain most
thresholds within the last branches are found with the maximum stable volume algorith
threshold corresponding to the minimum difference is retained. C3. The iterative meth
image.
data, we can then reject the hypothesis than the co-localization is
only due to chance, as this may happen in high density objects
populations.
3. Results and discussion

3.1. Segmentation: determination of the objects in the image

Segmentation is a process that allows the identification of
objects in digital images. Binarization assigns a value of either 0
or 1 to each pixel. Pixels belonging to objects have a value of 1,
background pixels have a value of 0. In a second step, the objects
are labeled, which means that all neighbouring pixels with a value
of 1 are grouped to define an object. Segmentation is thus a process
by which a gray-scale image becomes a space in which objects are
located. In the most classical segmentation procedure, an intensity
threshold is used to binarize the image. Before thresholding,
smoothing of the image with an appropriate filter can be
performed with the plugin DiAna, if the image has previously not
been deconvolved and noise filtered. Indeed, proper image acquisi-
tion and pre-processing facilitates subsequent object extraction by
image segmentation for reliable analysis. The preparation of the
sample and image acquisition have been extensively discussed
elsewhere [5,23–25], and the benefits of deconvolution have been
well demonstrated [23,26–28] Noise filtering and global threshold-
ing are implemented in DiAna, so objects can be extracted before
analysis. The major problem with intensity thresholding lies in
the fact that this is a global approach. If the image contains bright
and faint objects, the application of a single threshold to the image
will end with the bright objects being too big or the faint objects
being too small. Hence, a local approach for segmentation is often
more useful. Therefore, we included two 3D segmentation proce-
dures in the DiAna plugin, which allow for segmentation of image
containing objects with different sizes and intensities (Fig. 1). The
‘‘spot segmentation” procedure is based on detection of objects
with local maxima and 3D analysis of the intensity distribution
around the maxima [16] (Fig. 1A,B). This procedure brings the
advantage that objects with different intensities will be properly
segmented. It should, however, be noted that each local maximum
is a seed that marks an object, it is thus advised to deconvolve or
apply smoothing filters before maxima detection, and to carefully
set the intensity threshold for maxima selection. The plugin DiAna
offers visualization the local maxima so best parameters can be
found before performing segmentation. Finally, it is noteworthy
that the method is best suited for spot-like objects since in case
of irregular objects several local maxima may be found within
the same object which would then be split. Therefore, we intro-
ection of local maxima for segmentation of the objects with the spot segmentation
the objects to be discarded. For the radius parameter, a low radius (2 � 2) retrieves
between local maxima and avoids this problem. An example is encircled in red. A2.
3. Prior segmentation, a user-defined threshold intensity value allows selecting the
in B. B. Workflow of the spot segmentation procedure. B1. Maxima are detected as
ted. The user should define a maximum value in voxel for the radius of the largest
The distribution is plotted and fitted to a Gaussian curve. The user defines a factor
tal line placed to cover the area defined by the Gaussian curve (i.e. the size of the

. The corresponding intensity value on y-axis of the graphic is the threshold used for
ects of different intensities. Voxels around the maxima are successively included in
riterion is that the voxel intensity should be higher than the defined threshold. The
eviously included in the objects, which avoids merging of adjacent objects as shown
ring voxels are included as well, which avoids creation of filamentous structures
ethod. C1. The image is segmented with different intensity thresholds. From low to
nted objects which fall in the volume interval defined by the user are stored in a
ion and decrease in size along increasing threshold values. When an object becomes
disconnected objects, still having their volume in the specified interval. The best

m. The difference in the object volume between each threshold is computed and the
od determines a threshold specific to each object and reconstructs the segmented

"
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duced a tool in the ROI manager for manually selecting and merg-
ing pairs of objects when necessary. The ‘‘iterative segmentation”
procedure extracts each object by examining the output of thresh-
olding at different intensity values [17] (Fig. 1C). A complete
version of these segmentation procedures with more options can
be found in the 3D Image Suite [29,30].

The segmentation procedures implemented in DiAna were val-
idated for an image of neuronal presynaptic elements by
immunofluorescence labelling of tyrosine hydroxylase, acquired
with confocal microscopy (Supplementary Fig. S1). In comparison
to the ground truth (positive objects eye counted by experi-
menter), both segmentation procedures extracted objects accu-
rately (F-measure of 0.992 and 0.987 for spot and iterative
procedure, respectively). The output of segmentation was further
tested on another dataset from similar objects to compare results
from raw and deconvolved image. The segmentation was less pre-
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cise on raw images but still efficient enough to apply co-
localization analysis (F-measure for deconvolved images 0.966
and 1, and for raw images 0.934 and 0.966, for spot and iterative
procedure, respectively). The algorithms in both spot and iterative
segmentation procedures have been chosen so they are generally
applicable to most biological images with good robustness. How-
ever, users are advised to test several values for the parameters
and validate the segmentation by visual inspection of the segmen-
tation result. It is a general rule that only the biologist can properly
estimate whether the segmented objects correspond to what he/
Fig. 2. Measurements performed in DiAna plugin. A–C. Distance analysis measurements p
Percentage of co-localizing volumes normalized to the volume of either one or both obj
distant objects. The user-defined maximum distance between objects (blue arrows) set th
the references to colour in this figure legend, the reader is referred to the web version o
she considers as biological objects. Images of similar biological
objects often contain variable intensities. This may be due to differ-
ences in the efficacy of fluorescent labelling from one experiment
to another, or from lack of stability of the excitation and detection
system of the microscope. Therefore, the values determined for the
parameters of the segmentation may not be applicable to two dif-
ferent sets of images. A way to circumvent this problem is to nor-
malize the mean intensity of the whole image [23] before defining
the segmentation parameters and reliably applying them to all
images of the study.
erformed by DiAna are centre-to-centre (A), edge-to-edge (B), centre-to-edge (C). D.
ects are computed by DiAna. E. Contact surface measurements for overlapping and
e extent of the object contour for which the contact is defined. (For interpretation of
f this article.)
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3.2. Three-dimensional measurements for object analysis

Following the application of the segmentation procedure
described in Section 3.1, DiAna offers precise 3D measurements
for co-localization and distance analysis. Of note, users can seg-
ment their images with any other method of their choice and
Fig. 3. Detailed co-localization measurements using the plugin DiAna A–B. Close-ups
fluorescent channels. Images were obtained from brain sections immunolabeled for sy
synaptophysin). C. Distance measurements between centres of co-localizing objects rev
localized objects from image A. D. Measurements of the percentage of the co-localizing
objects from image B than for the objects from image A. E. 3D volume rendering from im
percentage co-localization volume is lower than 5% and a cut-off can be defined to avoid
localization analysis was performed on image stacks containing more than 5000 objects
segmentation as they are not biologically relevant. (For interpretation of the references to
directly use the analysis tools of DiAna. The plugin quantifies sev-
eral parameters for pairs of objects (Fig. 2). It also introduces mea-
surement of surface of contact for distant and co-localizing objects,
which requires a user-defined edge-to-edge distance (Fig. 2E).
Those parameters are used for co-localization and distance analysis
as described in Sections 3.3 and 3.4. Moreover, DiAna performs
of single sections from deconvolved and segmented image stacks showing two
naptic proteins (green: vesicular transporter VGLUT1, red in A: bassoon, red in B:
eal that the co-localized objects from image B are closer to each other than the co-
volume for each object’s pair reveal that the co-localizing volume is bigger for the
age stack showing an example of co-localization artefact due to optical smear. The
such false positives. Images were segmented using spot segmentation protocol. Co-
in each channel. Scale bars in A–B: 1 lm. Note that some spots are excluded from
colour in this figure legend, the reader is referred to the web version of this article.)
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measurements of several parameters such as volume, mean inten-
sities, surface area, Feret’s diameter, coordinates of centres of mass
and centroids for all objects of the image.

3.3. Co-localization analysis with DiAna

Co-localization is determined by the detection of overlapping
objects. DiAna computes distances between co-localizing objects
(Fig. 2A–C) as well as measurements of co-localizing object vol-
umes for each pair of objects (Fig. 2D). Those measurements allow
for precise quantification of the co-localization. Fig. 3 shows two
biological examples where images of synaptic markers with known
differences in co-localization where analysed with DiAna. Note
that some spots are excluded from segmentation because they
are not biologically relevant. VGLUT1 can sparsely be found in
the axon in between the presynaptic elements which are the
objects to be extracted [31] and immunofluorescence for synapto-
physin and bassoon retrieves low intensity background besides rel-
evant signal. The co-localization of the vesicular transporter
VGLUT1 with synaptophysin (Fig. 3A) and with Bassoon (Fig. 3B)
was analysed by determining centre-to-centre distances and the
percentage of the co-localization volume (Fig. 3C,D). A perfect co-
localization between VGLUT1 and synaptophysin was revealed
with a centre-to-centre distance smaller than optical resolution,
while the co-localization between VGLUT1 and bassoon is not
complete, as shown by a longer centre-to-centre distance and
lower percentage of co-localization for each pair of objects. Those
results fit the measurements performed from electron microscopy
Fig. 4. Distance analysis of paired of non co-localizing objects with the plugin DiAna A. C
channels. Images were obtained from brain sections immunolabeled for proteins exp
transporter VGLUT1, red: tyrosine hydroxylase). B. Distance analysis retrieves centre-to-c
in red channel. The histogram of distance distribution shows that 50% of the objects fr
Distance analysis was performed on image stacks containing more than 3000 objects i
segmentation as they are not biologically relevant. (For interpretation of the references to
and STED microscopy data [32,33], as VGLUT1 and synaptophysin
are found in the main vesicular pool while bassoon is restricted
to the active zone next to the plasma membrane of the presynapse
[34,35].

Interestingly, the percentage of the co-localizing object’s vol-
ume given by DiAna allows using a cut-off to discard false posi-
tives, which could appear because the blur in z-axis can lead to
small overlap between objects (Fig. 3E). This loss of axial resolution
can be reduced by refractive index matching [36] and by deconvo-
lution [27,28]. It is noteworthy that it was measured that deconvo-
lution improves co-localization analysis [37–39].

Finally, in addition to co-localization measurements, DiAna
retrieves tables with quantifications such as volume and mean
intensity for each object of both images. Each object is identified
in the co-localization and measurement’s tables, ensuring that a
correlation between chosen criteria can be drawn.

3.4. Distance analysis with DiAna

DiAna also offers a distance analysis for either co-localized
objects or for all objects from the two images. For each object from
one image, the centre to centre distances with all objects of the
other image are computed in 3D. By default, the plugin identifies
the closest, not co-localizing, object. The user can also select the
rank of the objects to be included in the result table (first closest
only, first and second closest, first to fifth etc.). Note that in this
case the co-localizing objects will be included in the results as
the first closest objects. The distances measured can be used to plot
lose-up of a single slice from deconvolved and segmented image stack showing both
ressed in different, hence not co-localizing, synaptic structures (green: vesicular
entre distance in between all objects from green channel and their closest neighbour
om the red channel are localized at less than 1 lm from objects of green channel.
n each channel. Scale bars in A–B: 1 lm. Note that some spots are excluded from
colour in this figure legend, the reader is referred to the web version of this article.)
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a histogram of distances between neighbouring objects for spatial
distribution analysis, and correlation between quantified parame-
ters from the object pair can be assessed. Fig. 4 shows the spatial
analysis in a biological example where the distances of two synap-
tic markers, the vesicular transporter VGLUT1 and tyrosine hydrox-
ylase where analysed with DiAna. The analysis of the distances to
the first closest object shows that objects from the red channel are
preferentially localized in the vicinity of objects from the green
channel, since 50% of all red objects are found in a distance below
1 lm to a green object, which exactly fits with measurements per-
formed on images obtained by electron microscopy [40].

The distance analysis can furthermore be used to assess co-
localization in the case where objects are represented as single
voxels. DiAna can be used to estimate co-localization from images
of the centre of the objects. The centre-to-centre distance, given by
the distance analysis, allows determination which objects do co-
localize (Fig. 5). The measured distances can be ranked to set a
threshold value, which will define which single-voxel objects do
co-localize. Co-localization can be decided if the distance is smaller
than the optical resolution. In this case the threshold distance can
be either set to zero or more, depending on the resolution of the
image (Fig. 5A–C). Alternatively, the co-localization can be decided
if the distance value is lower than a threshold distance estimated
on the basis of the knowledge of minimal size of the objects
(Fig. 5A,D). It is noteworthy that this method can be applied for
co-localization analysis in images of single particles, in which
objects are represented as single voxels, often identified as the
peak of the Gaussian distribution of objects intensity.
Fig. 5. Co-localization analysis based on localization of object’s centres with the plugin
analysis of the distance distribution of objects. The coloured bars in the histogram illustra
defined in B–D. B. Co-localization can be defined for either a zero distance or a distance
than the resolution of the imaging system. D. In case the minimal size of the biological o
the sum of the minimum radiuses of objects A and B. Scale bars in B-D: 300 nm. Pixel s
reader is referred to the web version of this article.)
3.5. Assessing statistical robustness in object based co-localization
analysis

In pixel-based co-localization analysis, statistical significance of
co-localization may be estimated by comparing co-localization
measurements before and after randomization of pixels. Costes
et al. [10] confronted the Pearson coefficient (PC) of an image pair
with correlation coefficients obtained between the green channel
and randomized images of the red channel. To do so, they shuffled
pixel blocks of one fluorescent channel in a randomized manner
and measured the PC after each randomization round. They
obtained a Gaussian distribution of PC after randomization and
deduced that the PC obtained for the original image pair would
be statistically significant if it is not included in the area of the
Gaussian curve. With the DiAna plugin, we introduce a similar
method, originating from spatial statistics analysis and described
in Andrey et al. 2010 [22], applied to object-based co-localization
(Fig. 6). First, objects from one image are randomly redistributed.
The shuffle function allows to either redistribute the objects in a
uniform manner within the whole image, or to import a binary
image which defines regions in which redistribution is constrained
(Fig. 6A–C). Shuffled images are generated, and for each of these
images the centre-to-centre distances between objects of the ran-
domized channel to the closest object in the second channel from
the original image are computed. The cumulative distribution of
the distances is plotted, and represented as the mean (Fig. 6D,
red curves) flanked by 95% confidence intervals of the results
(Fig. 6D, green curves). In parallel, observed centre-to-centre dis-
DiAna A. Distance measurements between all points from two images allows the
te threshold values, which can be used to define co-localization according to criteria
equal to voxel size. C. Co-localization can be defined for distances which are lower
bjects are known, co-localization can be defined for distances which are lower than
ize: 60 nm. (For interpretation of the references to colour in this figure legend, the
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tances between objects from the non-randomized original images
are measured and plotted on the same graphic (Fig. 6D, blue
curves). Statistical significance is assessed by the null hypothesis
that the experimental data are due to randomness. If the distribu-
tion of the distances from experimental images falls outside the
confidence interval of the distance distribution obtained for shuf-
fled images in which object locations are random, one concludes
that there is less than 5% chance (p < 0.05) that the observed distri-
bution is random and thus the co-localization is considered as sta-
tistically significant. In addition, the plugin calculates the rank of
the observed distribution within n distributions obtained from
shuffled images. A rank lower than 0.025 or higher than 0.975 indi-
cates that the probability that the observed distribution is random
is inferior to 5% and the co-localization is then considered signifi-
cant. In the example of the Fig. 6, the co-localization of VGLUT1
and synaptophysin was assessed and the analysis shows that the
co-localization is significant, which is expected as these two pro-
teins are both found in the vesicles from the presynaptic element
of neurons [35,41].

Note that this methodology for assessing statistical robustness
using a randomization procedure is quite generic and can be
applied to other functions for co-localization analysis and generally
to many other problems.

4. Conclusion

We have developed an ImageJ-based tool named DiAna, allow-
ing for spatial analysis in the three dimensions. In this tool we
implemented two methods of 3D-segmentation, which show faith-
ful and robust object extraction despite high variability of object
size and intensity within the image. Furthermore, the tool allows
executing extended object-based co-localization and distance
analysis between objects in 3D. After co-localization or distance
analysis, quantifications for each object are possible. Finally, we
introduce a new method for the estimation of statistical signifi-
cance of object-based co-localization. The algorithms we devel-
oped are implemented in a user-friendly plugin, which allows for
complete but intuitive 3D image analysis, applicable to a large vari-
ety of biological objects.

The plugin with instructions for use can be found at [http://
imagejdocu.tudor.lu/doku.php?id=plugin:analysis:distance_analy-
sis_diana_2d_3d_:start].
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ymeth.2016.11.
016.
Fig. 6. Statistical significance of the object based co-localization A. DiAna can
perform randomization of objects localization within a selected region in the image.
3D surfacing rendering of objects segmented within a mask. Each spot corresponds
to an object and the mask volume appears in grey. B. View of the same objects as in
A following the application of a shuffle procedure. The positions of the objects are
randomly redistributed within the corresponding mask volume. C. 3D surface
rendering of segmented objects from two images. Images were obtained from brain
sections immunolabeled for synaptic proteins (green: vesicular transporter
VGLUT1, red: synaptophysin). In the shuffled image, red objects are randomly
redistributed. The co-localizing volumes appear in white. Note that their occurrence
is lower after shuffling. Lower panels shows close-ups from the regions of the upper
panel. The objects have an average diameter of 600 nm. D. The DiAna plugin
provides a graphic, which represents the cumulative distribution of the minimum
centre-to-centre distances between objects from two images. The blue curve shows
the distribution for the experimental images shown in B. The red curve shows the
mean distribution of distances between objects from the experimental green
images and from 100 red images obtained by the shuffle procedure. The green curve
represents the 2.5 and 97.5% confidence intervals around the mean. The exper-
imental curve (in blue) is localized outside the 95% confidence interval (in green) of
the distance analysis done after randomization, the co-localization is thus consid-
ered as statistically significant. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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a b s t r a c t

This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval
of data from neuron morphological databases. In recent years, the continuously expanding neuron data-
bases provide a rich source of information to associate neuronal morphologies with their functional prop-
erties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale
neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method
to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-
time similarity searching in Hamming space. Because the neuron databases are continuously expanding,
it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this
problem, we extend binary coding with online updating schemes, which only considers the newly added
neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-
grained level, we introduce domain experts/users in the framework, which can give relevance feedback
for the binary coding based retrieval results. This interactive strategy can improve the retrieval perfor-
mance through re-ranking the above coarse results, where we design a new similarity measure and take
the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing
promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists
to identify and explore unknown neurons.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Analyzing single neuron properties, such as cell types, brain
regions, functions, and development stages, is usually a fundamen-
tal task for understanding the nervous system and brain working
mechanism. Given the huge numbers of neuron cells in the human
brain, it is infeasible to understand every neuron’s properties
through traditional biological experimentation and quantitative
computation. Generally, neuron morphology plays a major role in
determining neuron’s network connectivity, functional and physi-
ological properties. It is therefore reasonable and essential to
explore neuronal properties according to their morphologies.
Recent developments in the frontiers of neuroscience (e.g., BigNeu-
ron [1]) have greatly facilitated research in neuron morphology,
and an expanding number of neurons are being reconstructed
and added to the public repositories [3,2]. These fast-growing large
databases provide a new avenue to help biologists explore and
analyze neuronal properties [4,40,24]. Specifically, given an
unknown neuron, we can retrieve neurons with similar morpholo-
gies in the databases. These retrieved similar neurons can be used
to identify the unknown neuron and discover latent knowledge of
their morphologies and properties.

Recently, researchers have been actively investigating this neu-
ron morphological retrieval issue. For example, Costa et al. [9] first
presented NBLAST to measure pairwise neuronal similarity. NBLAST
considers both the position and local geometry, decomposing neu-
rons into short segments and score matched segments to decide
the similarity level among neurons. Subsequently, Wan et al. [49]
designed BlastNeuron for automated comparison, retrieval, and
clustering of 3D neuron morphologies. In the retrieval stage,
BlastNeuron searches similar neurons via the normalization of the
ranked scores in terms of the similarity of feature vectors. Despite
their high accuracy, these two methods could be inefficient when
handling large-scale neuron databases. Mesbah et al. [32] proposed
a data-driven hashing scheme, i.e., Hashing Forest, to search among
large neuron databases. By establishing multiple unsupervised ran-
dom forests, 128 or more binary bits are generated to represent
morphological features. The Hashing Forest has achieved efficient
and accurate results in neuron retrieval [7,6]. Nonetheless, it usu-
ally needs a large number of binary bits (e.g., larger than 128), and
its efficiency can be further improved with shorter codes.
Accordingly, how to search similar neurons in large-scale
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databases with high efficiency and accuracy is the main focus in
neuron retrieval.

As described in [32], binary coding and hashing have been
widely applied in content-based image retrieval (CBIR), which tar-
get efficient similarity search in large-scale databases
[50,56,55,58]. Binary coding/hashing methods usually train a cod-
ing function from the batched image databases, and then employ
the coding function to transform image features into short binary
codes. Many representative methods have been proposed in recent
years, including, but not limited to, Spectral Hashing (SH) [51],
Iterative Quantization (ITQ) [15], and Asymmetric Inner-product
Binary Coding (AIBC) [48]. Despite the good performance in CBIR
problem, they may not be directly applicable to the neuron retrie-
val problem, since the neuron databases are continuous expanding.
Due to the recently well-developed neuron tracing techniques, an
increasing number of neuron cells are reconstructed and added
to the databases in a streamed manner. For example, the
NeuroMorpho database [3] usually releases 1000–2000 recon-
structed neuron cells with each update. If we re-train the coding
function every time from scratch, using both the original and the
newly added neuron batch, it is very time-consuming and
adversely affects the efficiency of exploration.

Besides the problems of efficiency, there are two limitations
influencing the retrieval accuracy of the neuron data. First, the
neuron databases lack supervised information, i.e., no sufficient
annotations to label the class of every neuron [4,34]. Generally,
supervised retrieval is more accurate than unsupervised retrieval,
since it can bridge the gap between low-level image descriptors
and high-level semantic meaning. In the neuron retrieval problem,
if we only consider the low-level neuronal morphologies, the
retrieval results may not be consistent with their functions and
properties. Second, binary coding can only provide coarse retrieval
results for neuron morphological data [27,59,57]. As each neuron
cell has a tree-topological structure, the difference among neuron
morphologies can be subtle. Moreover, coding functions do not
have a one-to-one correspondence when mapping morphological
features into binary codes. This may present a difficult question,
in which some unrelated neurons are represented by the same bin-
ary codes. The above two problems should be addressed to achieve
good retrieval performance in the neuron morphological data.

To alleviate these problems, we designed a novel framework to
achieve accurate and efficient data retrieval from large-scale neu-
ron morphological databases. Specifically, we employ a matrix
sketching technique [25] for binary coding, which can learn coding
functions from the sketched neuron data, significantly reducing the
matrix size of neuron databases, and continues to give good
approximations with an orthogonal matrix. To tackle the continu-
ously expanding neuron databases, we extend the binary coding
with an online updating scheme, where the coding function can
be updated on-the-fly without accessing whole neuron databases.
Subsequently, based on the coarse retrieval results from binary
coding, we introduce domain experts/users in our framework,
which can give relevance feedback to improve the retrieval accu-
racy. In our feedback model, domain experts/users are only
required to label the relevant samples with respect to query neu-
rons from top-z results. Then, the similarity levels of the unlabeled
neurons are re-ranked accordingly through our newly designed
similarity measure. To the best of our knowledge, this is the first
work that focuses on the interactive exploration of the continu-
ously expanding neuron databases.

The remaining paper is organized as follows: Section 2 briefly
reviews work related to 3D neuron morphology and content-
based image retrieval. Section 3 provides the details of binary cod-
ing and interactive neuron retrieval. Followed by experimental
results and discussion of potential use cases in Section 4. Finally,
Section 5 concludes the paper and presents future work.
2. Preliminaries

This paper pursues neuron exploration via the retrieval of mor-
phological data, which has a strong multidisciplinary component
that involves a nexus of ideas from neuroscience, machine learning
and information retrieval. In this section, we provide an introduc-
tion to 3D neuron morphology and content-based image retrieval.

2.1. 3D neuron morphology

Benefiting from recent advances in microscopy imaging and
neuron reconstruction [42,61,38], researchers have gradually elu-
cidated the 3D neuron morphology. Currently, two kinds of micro-
scopy imaging techniques can be used to obtain neuron images,
i.e., light microscopy (LM) and electron microscopy (EM). LM
images have long been used as a fundamental tool for neuroscien-
tists. EM images can usually achieve higher resolution and magni-
fication compared with LM images, but also have a higher cost and
require harsher specimen processing. Researchers have developed
a variety of methods for the reconstruction of LM and EM images
[10,37,54]. Generally, from the original 2D microscopy images to
the 3D morphological data, a neuron tracing system consists of
several processing steps, including image preprocessing (e.g., noise
reduction, deconvolution, mosaicing), segmentation (e.g., soma,
dendritic trees, spines, axons segmentation), reconstruction and
connection ([5,31,52,16,62,11,18]). Fig. 1(a) illustrates a neuron
slice [33] which includes microscopy images acquired from multi-
ple view points, and Fig. 1(b) presents the corresponding 3D recon-
structed neuron morphological data through the neuron tracing
software Vaa3D [38]. Accordingly, 3D morphological data can pro-
vide precise descriptions of neuronal shape and structure.

Given the 3D neuron morphological data, one critical problem is
how to mathematically represent these neurons for the further
retrieval and analysis, i.e., extracting feature vectors for each neu-
ron. Unlike 2D biological images which can extract features with
many well-studied algorithms, extracting good features from 3D
neuron data is still a challenging problem. Costa et al. [8] first pro-
posed the concept of neuromorphological space, which introduced
many quantitative measurements (e.g., neuronal height, number of
branches) based on the neuron’s tree-topological structure. Subse-
quently, many researchers have employed these quantitative mea-
surements as morphological features to represent each neuron
[9,49,32]. For example, Wan et al. [49] employed several global
measurements to reveal the overall morphology of neurons.

In this paper, we also utilize these quantitative measurements
as neuron morphological features. Specifically, as illustrated in
Fig. 1(c), we compute three levels of measurements to reflect neu-
ron morphologies comprehensively, i.e., bifurcation, branch and
global [23]. For example, the features in branch level indicate the
measurements regarding neuron branches that are directly con-
nected to soma, such as the brach length, the Eculidean distance
from compartments to somas. The above three levels of measure-
ments are invariant to translation, rotation and the tracing resolu-
tion. In the following sections, we employ the assembled
measurements as feature vectors to represent each neuron cell
for retrieval and analysis.

2.2. Content-based image retrieval

Content-based image retrieval (CBIR) is a long-term research
topic which aims at searching similar images by their content. As
a comprehensive application in computer vision and machine
learning, CBIR has developed many branches for different concerns
and targets. In this subsection, we introduce its two branches, i.e.,
hashing and human interaction, which are the main focus in our
neuron retrieval framework.
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Fig. 1. From original microscopy slice to 3D neuron morphology: (a) original microscopy slice; (b) 3D reconstructed neuron morphology; (c) three levels of measurements for
feature extraction.
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Numerous methods of binary coding/hashing have been pro-
posed in recent years. In CBIR, by compressing long feature vectors
into short binary codes, similarity search will be much more effi-
cient in binary Hamming space compared to high dimensional fea-
ture space. The key challenge is how to obtain coding functions
which can not only transform feature vectors via binary codes,
but also keep similarity and diversity among the original data.
One major taxonomy of hashing methods is whether they need
specified training data to obtain the coding functions, i.e., data-
independent and data-dependent. Locality-Sensitive Hashing
(LSH) and its variants [14,20,41] are one of the most representative
data-independent methods. Despite the fact that these methods
can generalize coding functions to compact any given datasets,
they usually need long bits of code to ensure good performance.
For the data-dependent category, a large number of methods have
been proposed in recent years. While these methods can only learn
coding functions for given datasets, they are usually more accurate
and efficient. Representative methods include Iterative Quantiza-
tion (ITQ) [15], AGH [29], Isotropic Hashing (IsoHash) [19], Mini-
mal Loss Hashing (MLH) [35,36], FastHash [26], etc. Despite the
good performance that these methods have achieved, all of them
are batch based methods, which learn coding functions from one
batch of training data. For the continuously expanding neuron
databases, as neurons are released in streamed fashion, we cannot
directly adopt the above methods for the neuron retrieval problem.

In order to improve retrieval performance and reduce the seman-
tic gap, some CBIR systems introduce domain experts/users in the
loop,which can interactivelyprovide relevance feedback for thepre-
vious retrieval results. Generally, for an image query and its coarse
retrieval results, there are three kindsmodels to give relevance feed-
back: (1) positive feedback, where the users only need to select rel-
evant images; (2) positive–negative feedback, where the users need
to select both relevant and irrelevant images; (3) positive-neutral-
negative feedback, where the users need to specify the degree of rel-
evance for all the retrieved images. A comprehensive review of the
early work on relevance feedback for CBIR is presented in [60]. Most
of the early approaches use themarked images as individual queries
and combine the retrieval results to refine the similarity weights of
relevant images [45,44]. In recent years, many algorithms in the
machine learning field have been used for the interactive CBIR prob-
lem, e.g., random forests [39], graph-cut [46], random walk [21],
manifold learning [17]. All these methods can improve the retrieval
performance with several rounds of interactive feedback. However,
it is still a challenging issuewhen applying user interaction in large-
scale neuron databases.

3. Methodology

This section presents the methodological details of our neuron
retrieval framework, including binary coding with online updating
and interactive neuron retrieval.
3.1. Overview

Fig. 2 shows an overview of our neuron retrieval framework.
The first part is training binary coding model (i.e., coding func-
tions) for the neuron databases. We apply matrix sketching
method on the feature vectors which are extracted from the origi-
nal neuron databases, generating the initial values (including data
sketch and virtual sample) for subsequent online updating. When a
new neuron batch becomes available, we combine it with the
aforementioned virtual sample. This combination can overcome
the mean-varying problem in continuously expanding databases.
The sketching result can subsequently be used for binary coding,
updating the current coding function. The new data sketch and vir-
tual sample are also stored for the next update. In the interactive
neuron retrieval part, feature vectors of query neuron and all neu-
rons in current databases can be compressed into short binary
codes based on the updated coding functions. Then the similarity
search between query neuron and neurons in databases are trans-
formed into the Hamming distance ranking between their binary
codes. To further improve the retrieval performance, we present
top ranked neurons to users. Users will give relevance feedback
to clarify which is similar with the query neuron. Our framework
can process the above feedback and re-rank the retrieval results.
Finally, the refined retrieved neurons can be used to help biologists
to explore and analyze the query neuron.

3.2. Binary coding with online updating

Matrix Sketching based Binary Coding: The goal of binary coding
is to compress feature vectors into short binary codes, keeping
diversities and similarities among original data. Denote a training
neuron database X ¼ fx1; . . . ;xi; . . . ; xng � Rn�d, which includes n
neurons, and each neuron has d dimension of features. We aim
to learn a coding function W 2 Rd�r that every normalized neuron
feature in X can be transformed into r bits of binary codes, i.e.,
hðxiÞ ¼ sgnððxi � XÞWÞ, where X is the mean value of X. Note that
feature normalization with zero mean is a crucial step in binary
coding, especially for neuron data, because each dimension of fea-
tures has their physical meaning. To learn effective binary codes,
usually two requirements should be satisfied: (1) binary bits are
uncorrelated and their variances are maximal; (2) numbers of 0
and 1 are roughly equal in learned binary codes of X. Same as
[50], the requirements are satisfied by maximizing the following
objective function:

JðWÞ ¼ 1
n
traceðWTðX� XÞTðX� XÞWÞ; s:t: WTW ¼ Ir�r ð1Þ

Instead of directly optimizing the above objective function, we
apply the matrix sketching technique [25,12,22] on the training
database to learn coding function from data sketch. Sketching is
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Fig. 2. Overview of our proposed framework, including online model training and interactive neuron retrieval.
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a data compression technique which can significantly reduce the
data size, without losing much data properties. Specifically, for
the neuron database X, we denote its matrix sketch as Y 2 Rl�d,

which has the property YTY � ðX� XÞTðX� XÞ. We employ the
Frequent-directions (FD) algorithm [13] to compute Y, as this algo-
rithm can effectively keep the property of matrix sketch. More
importantly, FD is a streaming algorithm which can sequentially
process the training data. In other words, when a new data batch
comes, the FD algorithm will update the current sketch which only
consider the new data one by one, without accessing the previ-
ously processed data. We show the advantage of such a streaming
strategy for the online updated neuron data in the next subsection.

Given the data matrix X, the FD algorithm can obtain its sketch
Y with a much smaller data size (l � n). Then, the objective func-
tion of binary coding can be re-written as:

JðWÞ � 1
n
traceðWTYTYWÞ; s:t:WTW ¼ Ir�r ð2Þ

This objective function is exactly the same as that of Principle
Component Analysis (PCA). The optimal coding function W can
be obtained by taking the top r eigenvectors of the data covariance
matrix YTY [15]. In addition, to alleviate the unbalance of different
dimensions in neuron data, we adopt orthogonal rotation R for the
above coding function, where W ¼ WR. However, since the sketch
Y is much smaller than the whole training data X, we cannot learn
the optimized R as ITQ [15], which relies on all training data.
Instead, we generate a random orthogonal rotation matrix, which
achieves promising accuracy and efficiency in our experiments.

Online Coding Function Updating: When new neuron batches are
added to the database, we need to update the coding function
accordingly to maintain the retrieval performance. Re-training
the coding function from scratch is very time-consuming, and
sometimes infeasible when the existing neuron database is too
large to load into memory. Considering that the FD algorithm can
compute the data sketch in a streaming manner, an intuitive solu-
tion is to set the previous database sketch as the initial value, and
then employ the FD algorithm to compute the sketch for newly
added data. The coding function can be also updated with the
newly computed data sketch. Unfortunately, this approach is
impractical because of the aforementioned feature normalization
requirement in binary coding. As the neuron database is continu-
ously changing, the mean value for normalization is also changed.
How to overcome this mean-varying problem is a critical step to
online update the coding function.

Assume Bk is the newly added batch at round k which include
mk neurons, and the current database is denoted as
Xk ¼ fB0;B1; . . . ;Bkg, where B0 is the original neuron database.
Then, the mean value of Xk can be computed as:
Xk ¼ Xk�1 � nk�1 þ Bk �mk

nk
ð3Þ
where Bk is the mean value of Bk and nk ¼
Pk

i¼0mi. Obviously, the
mean value of the neuron database is changed in each update. To
solve this problem, we introduce a virtual sample Ik, which consid-
ers the difference of mean value between the previous database and
the current batch [43,22]:
Ik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk�1mk

nk

r
ðBk � Xk�1Þ ð4Þ

Combining this virtual sample with the currently added neuron

batch, we can obtain a data set bBk:
bBk ¼ ½Bk � Bk;Ik� ð5Þ

At round k, we have a new set of data bXk ¼ fB0 � B0; bB1; . . . ; bBkg.
According to [43,22], in each update, bXk takes the shift of mean
into account and corrects such a shift by the virtual sample inbBk. More importantly, combining with Eq. (3), we find thatbXT

k
bXk ¼ ðXk � XkÞTðXk � XkÞ. This property indicates that the data

sketch of bXk and Xk � Xk is the same. Since bXk has no mean-
varying problem, we can employ the aforementioned FD algorithm

to sketch the continuously updated neuron data, i.e., sketch bBk to
obtain Yk, initialized by the previous data sketch Yk�1. Then the
coding function can be also updated on-the-fly via the matrix
sketching based binary coding. In each update, without accessing
the entire neuron databases, we only need to keep the mean value
Xk (through Eq. 3), data size nk (through nk ¼ nk�1 þmk) and the
data sketch Yk. Therefore, this binary coding with online updating
scheme can efficiently tackle the continuously expanding neuron
databases for further retrieval and analysis.
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3.3. Interactive neuron retrieval

According to the above binary coding method, as illustrated in
Fig. 2, we can compress the query neuron and all neurons in the
current database into short binary codes, through the learnt coding
functions. Then the similar neurons can be retrieved based on their
Hamming distance ranking with the query neuron. As discussed in
Section 1, binary coding can only provide coarse retrieval results
for the neuron morphological data. Therefore, given the coarsely
retrieved neurons (e.g., neurons with top-Z minimum Hamming
distance), we propose to introduce domain experts/users in the
framework, which can interactively provide relevance feedback
to refine the retrieval results.

Fig. 3 presents an illustration of our user interaction interface.
For a query neuron, it first searches similar neurons based on the
aforementioned binary coding method. Then we display the top-z
(z = 16 in Fig. 3) retrieved neurons to users, and users will compare
and observe these neurons to decide whether they are relevant to
the query neuron. This feedback scheme is easily implemented
since it requires users to give only one-click inputs. Unlike many
interactive models which require users to specify the class of the
retrieval results [39,53,30], our strategy is particularly suitable
for neuron databases which have insufficient annotations to clas-
sify every neuron.

After receiving the interactive feedback from users, our frame-
work is able to process this feedback to improve the retrieval per-
formance. Benefiting from the binary coding step which can
efficiently provide the coarse retrieval results, we first define the
outer scope size Z, where most similar neurons are included in
the top-Z coarse results. Subsequently, we define the inner scope
size z, which represents the number of neurons that should be pre-
sented to the users at each feedback round. In practice, Z is larger
than z but much smaller than the size of the whole neuron data-
base. During the interactive neuron retrieval phase, we focus on
re-ranking these Z coarse neurons to obtain fine-grained results.

In the tth round of relevance feedback, VðtÞ is the set of labeled
similar samples from users which include mðtÞ neurons. As neurons
in VðtÞ are all similar with the query neuron, we can assemble them
together to interpret and re-rank the similarities for the rest of the
unlabeled neurons. Denoting Eðxi;xjÞ as the similarity measure
between two neurons xi and xj, for one unlabeled neuron in tth

round of relevance feedback xðtÞ
i , we re-define its similarity with

the query neuron as follows:

EðtÞ
i ¼ kEðxðtÞ

i ; xqÞ þ ð1� kÞ 1
mðtÞ

XmðtÞ

j¼1

EðxðtÞ
i ;xðtÞ

j Þ ð6Þ

where xq is the query neuron and xðtÞ
j is the neuron in VðtÞ. The above

objective function indicates that if an unlabeled neuron has similar-
ity with the query neuron, it should be similar with the labeled neu-
rons as well to some extent under the trade-off parameter k.

According to Eq. (6), how to compute the similarity measure is a
critical issue for re-ranking the unlabeled neurons. In most scenar-
ios of image retrieval, the similarity measure between two images
is defined as the Euclidean distance of their feature vectors. How-
ever, this similarity measure cannot be directly applied for the
neuron morphological data, since each dimension of neuron fea-
tures are distinct quantitative measurements which have different
levels of representation. As discussed in Section 2.1, we compute
three levels of measurements as features based on the neuron’s
tree-topological structure, i.e., global, branch and bifurcation.
Accordingly, we propose to group features into these three levels
and assign them with different representative weights (i.e.,
xgl;xbr ;xbi) to compute a more accurate similarity measure. For
the two neurons xi and xj, their new similarity measure can be for-
mulated as:

Eðxi; xjÞ ¼ xglDglðxi;xjÞ þxbrDbrðxi;xjÞ þxbiDbiðxi;xjÞ ð7Þ
where Dgl;Dbr ;Dbi denotes the normalized Euclidean distance of glo-
bal, branch and bifurcation features respectively. This similarity
measure is specifically designed for neuron morphological data. In
practice, the representative weights are determined by the neuronal
tree-topological structure, and we will discuss it in the experiment.

Finally, with the newly defined similarity measure, we re-rank
all the unlabeled neurons in ascending order based on their results
in Eq. (6), and present the updated top-z results to users. Users can
iteratively give relevance feedback for these z neurons until they
are satisfied with the retrieval results.

3.4. Implementation details

Given the query neuron xq, and the continuously expanding
neuron database fB0;B1; . . . ;Bkg, our neuron retrieval method can
efficiently obtain the similar neurons based on online binary
coding and interactive feedback. We outlined the framework in
Algorithm 1.

Algorithm 1. Neuron Retrieval based on Online Binary Coding
and Interactive Feedback.

Input: Continuously added neuron database fB0;B1; . . . ;Bkg;
Query neuron xq.

Output: top-S retrieved neurons.
1: Sketch B0 � B0 into Y0;
2: Initialize data size n0 ¼ m0, mean value X0 ¼ B0;
3: for i = 1 ! k do

4: Sketch bBi ¼ ½Bi � Bi;Ii� into Yi, initialize by Yi�1;
5: Update Wi through Eq. (2);
6: Update data size ni ¼ ni�1 þmi;
7: Update mean value through Eq. (3);
8: end for
9: if retrieve xq is required then
10: Binary encoding xq and fB0;Bi; . . . ;Big through Wi;
11: Rank the Hamming distance in ascending order;
12: t ¼ 0;
13: while users are not satisfied with the retrieval

results do
14: t ¼ t þ 1; (t-th round of user feedback)

15: Compute EðtÞ of unlabeled neuron through Eq. (6);

16: Re-rank the similarity based on EðtÞ;
17: end while
18: Present the top-S retrieved neurons.
19: end if
In the above neuron retrieval algorithm, we combine binary
coding and interactive retrieval to efficiently obtain the fine-
grained retrieval results. The binary coding part can efficiently
tackle the large-scale and continuously expanding neuron data-
bases, which update the coding function on-the-fly every time a
new neuron batch is added. For a query neuron, this part provides
the coarse retrieval results and significantly reduces the search
scope from tens of thousands to a few hundred (e.g., providing
neurons with top-Z minimum Hamming distance). In the interac-
tive retrieval part, users can give relevance feedback for the top-z
ranked neurons. Then the proposed algorithmwill re-rank the sim-
ilarity of unlabeled neurons based on the results of Eq. (6). Finally,
the Z coarse neurons will be re-ranked repeatedly until users are



Table 1
Training time comparison (in second).

Rounds 20 60 100

Batch-based 1.12 13.24 51.11
Ours 0.26 0.84 1.88

Fig. 3. An illustration of our user interaction interface, users will give feedback by
one-click inputs.
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satisfied with the retrieval performance, and we will provide the
top-S retrieved neurons to biologists to assist the exploration and
analysis of the query neuron.

4. Experiment

This section presents the evaluation of our framework for neu-
ron retrieval. We first validate the performance for both the binary
coding with online updating and interactive neuron retrieval. Then,
we demonstrate an example of its use in neuron exploration and
analysis.

4.1. Experimental setting

Our experiments are carried out on the NeuroMorpho [3],
which has the largest collection of publicly accessible 3D recon-
structed neuron data. Specifically, we use the entire 17,107 Droso-
phila Melanogaster neurons to evaluate the retrieval performance.
Following the convention, we employ L-measure toolbox to extract
38 quantitative measurements as morphological features for each
neuron [47], including 15 global, 10 branch and 13 bifurcation fea-
tures respectively. All the experiments are conducted on a 3.6 GHz
CPU with 4 cores and 32G RAM, in a MATLAB implementation.

To evaluate the retrieval performance, we select projection neu-
rons as queries for which the brain region is the olfactory antennal
lobe, and the cell classes are principal cell and uniglomerular pro-
jection (233 such projection neurons in total). We denote such pro-
jection neurons as uPNs. Despite that there are ten thousands of
neurons in NeuroMorpho database, most of them are not well clas-
sified due to the lack of sufficient annotations, i.e., they are not
identified in the finest level. We therefore select uPNs, since these
are one of the best identified classes in the drosophila brain. This
setting is also consistent with [9,49]. Then we evaluate the perfor-
mance by computing the retrieval precision, which is defined as:

Precision ¼ uPNsf g \ Retrieved Neuronsf gj j
Retrieved Neuronsf gj j ð8Þ

where �j j denote to count the number of samples inside. In the
experiments, we compute the average precisions obtained over all
queries.
In the binary coding with online updating, due to the require-
ment of the FD algorithm [13], the sketched data size l should be
no larger than the feature dimension d (d ¼ 38 as discussed above).
Since the feature dimension of neuron data is not high, we set
l ¼ 38 to preserve the information from the original database as
much as possible. In the interactive neuron retrieval, we adopt
an outer scope size of Z ¼ 300 and an inner scope size of z ¼ 30.
The trade-off parameter k is set as 0:3. For the defined similarity
measure in Eq. (7), we assign three levels of features with different
representation weights. Generally, global features can only repre-
sent neurons at a coarse level, and bifurcation features are so sub-
tle that even neurons in same class are different. In practice, we
empirically set global, branch and bifurcation features with the
weights ratio of 1:2:1, which reflect their respective representative
levels.
4.2. Evaluation of binary coding with online updating

In this experiment, we aim to demonstrate that the binary cod-
ing part can attain promising performance with the continuously
expanding neuron database. We randomly split the 17,107 Droso-
phila Melanogaster neurons into two parts. The first 1,107 neurons
are used as the original database, and the remaining 16;000 neu-
rons are equally divided into 100 batches (160 neurons in each),
which are sequentially added to simulate the expanding size of
the neuron database. Our online binary coding method is com-
pared with the batch-based method. The batch-based method cor-
responds to the first part in Section 3.2, i.e., matrix sketching based
binary coding. For each update, it needs to learn the coding func-
tion from scratch, using all neurons in the database. To overcome
randomness, we repeat the experiments a hundred times to report
the average.

Table 1 presents the accumulated training time of our method
and batch-based method at the 20th, 60th and 100th update
rounds respectively. Compared with the batch-based method, our
binary coding with online updating shows great superiority in
computational efficiency, and the superiority becomes more obvi-
ous with more rounds of updates, e.g., 51:11s versus 1:88s for one
hundred updates. When new neuron batches are added to the
database, our method only need to consider these newly added
neurons and update the coding function on-the-fly, while the
batch-based method needs to take all the neurons into account
to re-train the coding function. The merit of this online binary cod-
ing method is particularly beneficial in the future, since an increas-
ing number of neurons are reconstructed and added to the
databases through the recently well-developed neuron tracing
techniques.

Besides the superiority in computational efficiency, our binary
coding with online updating also demonstrates its comparable per-
formance in retrieval precision. Fig. 4(a) shows the average retrie-
val precision of two competitive methods, taking their top-10
retrieved neurons into accounts. The learned coding function com-
pact the feature vectors into 32 bits of binary codes in this exper-
iment. According to Fig. 4(a), our online method is able to achieve
similar retrieval precision as the batch-based method. Therefore,
the binary coding with online updating can significantly improve
the computational efficiency without sacrificing the retrieval preci-
sion. This is mostly improved by (1) the employed FD algorithm,



Fig. 4. Evaluation of the retrieval precision in 100 rounds of update: (a) Comparison of our method with the batch-based method; (b) Comparison of our method using
different bits of binary codes.

Table 2
Retrieval precision of four methods under different number of retrieved neurons.

top20 top30 top40 top50

ITQ [15] 0.7673 0.7249 0.6948 0.6614
AGH [29] 0.7589 0.7216 0.6951 0.6735
MIPS [24] 0.7923 0.7508 0.7088 0.6828
Ours 0.9015 0.8550 0.7888 0.7092
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which can compute the data sketch in a streaming manner; and (2)
the newly introduced batch of data with virtual samples, which
can overcome the mean-varying problem in a continuously
expanding neuron database. Regarding the parameter, Fig. 4(b)
shows the retrieval precision of our method when using 16, 24
and 32 bits of binary codes in each update. The online method
can always achieve good performance using different bits of binary
codes. These results verify that the online updated coding function
can generate effective and representative binary codes for neuron
morphological features.

4.3. Evaluation of interactive neuron retrieval

In this part, we aim to validate that the interactive strategy can
actually achieve good performance for the neuron retrieval prob-
lem. We will re-fine the coarse retrieved neurons from previous
binary coding results, where the neurons are retrieved from the
entire 17;107 Drosophila Melanogaster neuron database after
100 rounds of database updating. Particularly, we only consider
to refining neurons within top-Z minimum Hamming distance
(neurons in outer scope size). For the user interaction, users will
give feedback for the top-z unlabeled neurons (neurons in inner
scope size).

To evaluate the performance of interactive neuron retrieval, at
each feedback round, the top-z unlabeled neurons will be automat-
ically labeled using the ground truth in order to simulate the user’s
feedback. Since our interactive method only requires users to give
one-click inputs(relevant or non-relevant), the ground truth can be
easily achieved by checking whether the unlabeled neurons are
uPNs or not.

We compare our neuron retrieval method with three state-of-
the-art methods, i.e., ITQ [15], AGH [29] and MIPS [24], which were
all proposed to tackle the retrieval problem for large-scale data-
bases. ITQ [15] is a very effective binary coding method for most
natural image retrieval problems. AGH [29] has already achieved
excellent retrieval performance in mammogram data [28], and
MIPS is specially designed for the neuron morphological retrieval
problem. The above three methods are batch based method, which
can not process the continuously expanding neuron databases.
Thus, for fair comparison, the retrieval model of these methods
are trained through the currently entire 17;107 Drosophila Mela-
nogaster neuron database. As with the previous experiment set-
ting, we employ the 233 uPNs as queries to validate the retrieval
performance.

Table 2 reports the average retrieval precision of four competi-
tive methods under different number of retrieved neurons. For our
interactive method, the retrieval precision is recorded after 3
rounds of feedback. According to Table 2, our method can achieve
the highest precision under different number of retrieved neurons.
These results verify the proposed method is effective for the neu-
ron retrieval problem. It mostly benefits from the interactive strat-
egy which introduces users in the loop to give feedback for the
coarse retrieval results. Specifically, based on the user’s feedback,
our method can re-rank unlabeled neurons by the newly designed
similarity measure.

We randomly select a query neuron and present its top-20
retrieval results in Fig. 5 under different rounds of feedback. We
employ Vaa3D [38] software to display these neurons. The neurons
with green frames are relevant to the query, and neurons with red
frames are not relevant to the query. Generally, the retrieval per-
formance is improved greatly from coarse results to the results
after user feedback, which verifies the effectiveness of the pro-
posed interactive strategy. We also find that with the increased
numbers of feedback rounds, the retrieval performance improves
accordingly. This is because of the increasingly labeled neurons,
providing more information for re-ranking. In addition, according
to Fig. 5, many non-relevant neurons also present similar mor-
phologies with the query, which is usually hard to distinguish
through traditional retrieval methods. Thus, our interactive strat-
egy is a good choice for the fine-grained neuron retrieval problem.

In our interactive neuron retrieval, two parameters may influ-
ence the final performance, i.e., the outer scope size Z and the inner
scope size z. In the interactive part, we only consider the refine-
ment of top-Z ranked neurons from coarse retrieval results. Fig. 6
(a) shows the average retrieval precision with different outer scope
sizes after the 1st to 10th feedback rounds, taking top-30 retrieved
neurons into account. In Fig. 6(a), we find that with the outer scope
size ranging from 200 to 500, the retrieval precision has not change
too much. This is because the majority of relevant neurons
are already included in a small sized outer scope (e.g., Z ¼ 300).
A larger outer scope may include more relevant neurons, but
non-relevant and noisy neurons are also included which will



Query

Coarse Results

Results after 1 rounds of feedback

Results after 3 rounds of feedback

Antennal lobe
Uniglomerular projection

Fig. 5. Query example of the proposed method under different rounds of feedback: green framed neurons were relevant with the query, while red framed were non-relevant
neurons.

(a) (b)

Fig. 6. Retrieval performance with different parameter settings: (a) retrieval precision with different outer scope size after 1st to 10th feedback rounds; (b) retrieval precision
with different inner scope size after 1st to 10th feedback rounds.

Query

Peripheral nervous system
Multidendritic-dendritic arborization

Query

Antennal lobe
Uniglomerular projection

Top-5 similar neurons

Top-5 similar neurons

Fig. 7. Illustration of two unknown neurons and their top-5 retrieved neurons through the proposed method.
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influence the retrieval performance. Moreover, the inner scope size
z is the number of neurons we provide to users in each feedback
round, which can also influence the final performance. Fig. 6(b)
presents the retrieval precision with different inner scope sizes
after the 1st to 10th feedback rounds. According to Fig. 6(b), the
larger z can achieve better performance compared with smaller z
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values. This is easy to understand since a larger z will contain more
feedback information which can help us to re-rank the coarse
retrieved neurons.
4.4. Use cases and discussions

One important use case of our framework is the exploration and
analysis for unknown neurons. Currently, despite the fact that an
increasing number of neurons are reconstructed and added to
the public databases, most of them are not well identified and lack
basic annotations, such as cell classes and brain regions. Nanda
et al. [34] proposed to annotate brain regions and cell classes for
the NeuroMorpho [3] database. They employed the text-based
query tool to search neurons with given lengths (e.g., 10;20
microns) in each region to determine their brain regions, then they
identified cell classes based on the brain regions invaded by the
neurite terminals of every neuron. This method may inefficient
and unreliable, which the annotations are mainly obtained empir-
ically. Identity of unknown neurons is an urgent demand in current
neuron repositories.

Considering that neuron morphologies are associated with their
properties, and our neuron retrieval framework can search similar
neurons at a fine-grained level. It is reasonable to employ our
framework to conduct neuron exploration via examining retrieved
neurons, which have similar morphologies. To demonstrate this,
we randomly select two query neurons from NeuroMorpho [3],
whose neuron types are assumed to be unknown. After running
our neuron retrieval framework (retrieve the entire 17,107 Droso-
phila Melanogaster neurons, with 1 rounds of feedback), Fig. 7
illustrates their top-5 similar neurons respectively. For the two
query neurons, we find that their corresponding top-5 similar neu-
rons all have the same neuron types, i.e., in NeuroMorpho [3], the 5
neurons in first row are annotated as antennal lobe and
uniglomerular projection (uPNs), the 5 neurons in the second
row are annotated as peripheral nervous system and
multidendritic-dendritic arborization. Therefore, we can infer that
the two query neurons also have the same type with their top-5
retrieved neurons. The information provided in NeuroMorpho [3]
also verifies our inference about the two query neurons. In practi-
cal situations, we can employ more retrieved neurons (e.g., top-30
similar neurons) to statistically identify and analyze query
neurons.

The proposed method can efficiently achieve the above neuron
retrieval task, as it is designed for the exploration of large-scale
neuron databases. The method will be particularly suitable in the
future since big data is one major direction in neuroscience [1].
Besides the efficiency, for some specific neuron databases which
are not very large (e.g., considering neurons in some specific brain
regions with only hundreds of neurons), exhaustive search and
comparison can be applied to achieve more accurate results. In
addition, extracting more representative features for the 3D neuro-
morphological data will be also helpful to improve the neuron
retrieval performance.
5. Conclusions

In this paper, we present a novel framework for neuron explo-
ration and analysis, which interactively retrieves similar neurons
in the continuously expanding neuron databases. Specifically, our
framework achieves neuron morphological retrieval from coarse
to fine-grained levels. In the coarse level, we introduce binary cod-
ing with online updating to tackle the large-scale and continuously
expanding neuron databases. In each database update, coding
functions are learned on-the-fly by only considering the newly
added neuron data, and the coarse retrieval results are subse-
quently obtained in real-time. In the fine-grained level, we bring
users in the loop, which interactively gives relevance feedback
for the coarse results. By processing the feedback and re-ranking
the coarse neurons, our framework finally obtains a set of fine-
grained retrieval results. Experiments verify the efficacy of our
neuron retrieval framework and also illustrates its application in
neuron exploration. Based on the present work, we will develop
a comprehensive tool for efficient and accurate neuron retrieval,
which can help biologists to explore and analyze unknown
neurons.
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Podosomes are adhesive structures formed on the plasma membrane abutting the extracellular matrix of
macrophages, osteoclasts, and dendritic cells. They consist of an f-actin core and a ring structure com-
posed of integrins and integrin-associated proteins. The podosome ring plays a major role in adhesion
to the underlying extracellular matrix, but its detailed structure is poorly understood. Recently, it has
become possible to study the nano-scale structure of podosome rings using localization microscopy.
Unlike traditional microscopy images, localization microscopy images are reconstructed using discrete
points, meaning that standard image analysis methods cannot be applied. Here, we present a pipeline
for podosome identification, protein position calculation, and creating a podosome ring model for use
with localization microscopy data.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Super-resolution microscopy is the term given to a class of tech-
niqueswhich can image structures smaller than the diffraction limit
(�250 nm for visible light). Currently, localization microscopy is a
highly popular method for achieving super-resolution due to its
experimental simplicity. Localizationmicroscopy is based on detec-
tion and localization of randomly activated single molecules in a
sequence of images. These single molecule localizations are then
used to reconstruct a super-resolution image [1,2]. This means that
the reconstructed image is a collection of discrete points and should
be considered as a data set rather than as an image.

Quantitative analysis of localization microscopy datasets
requires identification of structures of interest in the data.
Although pattern recognition is possible without a model of a
structure, it is expensive computationally. Therefore it is easier
to identify structures of interest either manually or by software
using a set of rules, characteristics or a model of the structure.
For example, a number of studies have discussed identification of
the nuclear pore complex imaged with localization microscopy.
This was done by creating an intensity profile from single molecule
localizations and reconstructing. An average model was created
either using localizations from many nuclear pore structures [3]
or by convolving molecule localizations with a Gaussian to create
a continuous image [4] and then identifying them.
Here, we propose a method using the Ransac algorithm [5] and
an application of the Hough transform [6] to analyze localization
microscopy data to identify podosomes, which are matrix adhesive
structures formed on the cell surface of a number of cell types (for
example macrophages, osteoclasts, dendritic cells, and Src-
transformed fibroblasts [7]). Podosomes consist of an f-actin core
and a ring structure formed of integrin and integrin-associated
proteins (for example vinculin, paxillin, and talin) [7]. Podosomes
are thought to be involved in adhesion, tissue transmigration and
cancer metastasis [8]. Adhesion to the extracellular matrix, one
of the functions of podosomes, is moderated and maintained
mainly by the podosome ring [7].

Podosome rings in standard resolution fluorescence microscopy
images are visible as circles surrounding the actin-rich podosome
cores, and their radius varies between 0.5 and 1 lm [9], with some
evidence that diverse proteins are occupying discrete zones in the
ring [10]. Recent studies using different super-resolution methods
have presented two conflicting models of the podosome structure.
The podosome ring was reported to have the shape of continuous
hexagons in studies with high density localization microscopy
methods using live and fixed samples expressing fluorescent pro-
teins [11]. In contrast, when primary/secondary antibody labeled
fixed samples were imaged with localization microscopy the ring
was reported to be a collection of sparse protein clusters [10,12].
Results acquired using both of these approaches had suggested a
specific protein arrangement in the ring. For example, a visual
assessment of the images in [11] hinted that talin was closer to the
podosome center than vinculin. This was partially confirmed by a
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confocal microscopy study presented in [10], which found talin
formed an inner ring close to the core,with vinculin being uniformly
distributed through the podosome ring. However, a comparison of
the relative positions of different protein-classes found between
the twoexperimental approaches has not beenpossible due to a lack
of analysis methods suitable for localization microscopy data.

Our analysis method, described below, is tailored to be used
with localization microscopy datasets. It identifies podosomes
using a model of podosome ring structure, calculates the podo-
some ring protein positions and uses those positions to create a
second, more refined model of the podosome ring. Podosomes
were identified using an approximate, circular model of the ring
structure and for each identification the center point and radius
was measured. For identified podosomes we calculated the average
position of the protein around the ring. As the ring size varies
between different podosomes, we looked at the relative distance
of one protein to another to amass reliable statistics. Relative pro-
tein distances can then be used to build a podosome ring model.

2. Methods

2.1. Sample preparation

The podosome samples were prepared using the protocol
presented in [13]. Conjugated tandem dyes were supplied by Oleg
Glebov and prepared using the protocol presented in [14].

2.2. Imaging

Localization microscopy imaging was performed using the
Nikon STORM system, with an Eclipse Ti-E Inverted Nikon Micro-
scope, Andor Ixon camera, laser and LED light sources (laser wave-
lengths are: 405 nm, 30 mW; 488 nm, 90 mW; 561 nm, 90 mW
and 647 nm, 170 mW) and operated with NIS Elements software
with the N-STORM module. The imaging was performed with TIRF,
100x, N.A. 1.49 objective. In two color STORM imaging the 647 nm
laser was set to 25 mW, the 488 nm to 18 mW, and the 561 nm to
18 mW. The laser power was adjusted during the acquisition to
acquire similar number of counts in every frame (as far as possi-
ble), up to around 80% of the maximal laser power (72 mW for
488 nm, 561 nm, and 136 mW for 647 nm laser). As podosome
rings are rather flat structures positioned at the cell membrane,
imaging was performed in TIRF (or near-TIRF) angle to reduce
background and improve the signal-to-noise ratio.

Prior to imaging samples were immersed in an imaging buffer.
The base buffer was made according to the Nikon Protocols for
sample preparation [14] with b-Mercaptoethylamine (MEA, Sigma
Aldrich, 30070-50G). To ensure better stability of dyes in the sam-
ples Cyclooctatetraene (COT, 98%, Sigma Aldrich, 138924-1G) was
dissolved in DMSO (Sigma Aldrich, 472301-1L-D) and added to
the base buffer to a final concentration of 2 mM [15].

In each series about 10,000 frames were acquired, at a rate of
30–50 frames per second. An epi-fluorescent image of the region
of interest was also captured (with LED light, 488 nm and
561 nm) for each localization microscopy acquisition, which was
later compared with the reconstructed image. The super-
resolution images were reconstructed from the image sequences
using QuickPALM [16]. The sample preparation, imaging and anal-
ysis for 3B microscopy was performed according to [11].

2.3. Podosome identification and protein position calculation

To identify podosomes, it was first necessary to create a model
for them. Wemade a number of simplifications to the model which
we used to identify the podosome ring structure. The ring was
approximated to be circular (a circle’s center and radius can be
found using coordinates of three points positioned on that circle).
After the podosome identification the relative positions of proteins
in the podosome ring were calculated. Because some of the podo-
somes were elongated, and the podosome size varies, the distance
between the podosome center and proteins positioned in the ring
is not constant between podosomes or even a single protein in one
podosome ring. Thus the protein positions were calculated relative
to each other by subtracting the average position of one protein
from the average position of another.

The podosome rings were identified using a circular model. The
equation of a circle passing through three points can be found
using Eq. 1. Here we were interested in identifying the circle center
and the radius of the fitted circle (see Section 3). The software ran-
domly selected three points (separated by a small enough distance
so they could confidently belong to a single podosome ring) from
the localization data set (see step 1 in Fig. A.1) [5]. Then the circle
center and radius were calculated (step 2 in Fig. A.1). The fitted cir-
cle was then examined to meet two criteria: the size of the fitted
circle had to be similar to the size of actual podosomes (radius
0.5–1 lm) and the inside of the circle should have a very small
number of localizations, because there should be no fluorophores
present in the podosome cores. The acceptable number of localiza-
tions in the podosome center was established by finding the den-
sity of background localizations and then setting the threshold
50% higher (usually the same value was used for analysis datasets
of the same type). Lastly, the overlap of the fitted circle with the
actual podosome ring structure was evaluated, by examining the
distribution of protein localizations surrounding the fitted circle
in a proximity corresponding to an actual podosome ring thickness
(�400 nm). The values used for this fitting step were established
experimentally based on a fit to an average podosome ring from
a localization microscopy dataset (step 3 in Fig. A.1). If these crite-
ria were met the fitted circle parameters were saved (step 4 in
Fig. A.1), if not they were discarded. Then a new set of three points
was chosen and circle fitting steps were repeated (steps 1–3 in
Fig. A.1). The circular model is optimal for the rounder podosomes.
For elongated (elliptical) podosomes the fitted circle centers pro-
vided a wider range of possible podosome center points resulting
in an elongated distribution (this can be seen for some podosomes
in Fig. B.2b and c). Usually circles are fitted across the whole image,
however, their density is much higher in areas with podosomes
present.

The software ran for a set number of repetitions, which was
arbitrarily selected to be around 100x higher than number of
points in the data. The repetition number was smaller than the
number of possible combinations of selecting three points, how-
ever it usually provided about 3000 circle fittings meeting the fil-
tering criteria. For a data set containing up to twenty podosomes
this provided a good range of possible podosome centers. The cen-
ters of fitted circles were saved and plotted in an image for refer-
ence (see Fig. B.2). The podosome centers were found using an
application of the Hough transform [6]. The center points of the fit-
ted circles were convolved with a Gaussian function. Then, the cen-
tral points of actual podosomes were found by finding the local
maxima (step 5 and 6 in Fig. A.1 and B.2). Compared with the visual
assessment of the data the software had 80% success rate (the
remaining 20% were false positives and negatives, which were
removed during the protein distance calculation, see Fig. B.2).

The protein positions in the podosome ring were calculated rel-
ative to each other, comparing the average position of one protein
to the second. The podosome centers were used for the protein dis-
tance calculation. The outer boundary of the podosome ring was
usually hard to define computationally because of background
noise and close proximity between podosomes, although the rings
boundaries are clearly visible to the human eye (see Fig. B.1). Thus
a user input was required at this stage to create a mask image
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marking podosome boundaries. These images were created in
black-and-white, where white marked areas with podosomes (step
1 in Fig. A.2). Use of masking images had an additional advantage
of excluding areas where podosome ring composition may be dif-
ferent. For example fragments of the ring shared by two joint podo-
somes and removing false positive podosome identifications (see
Appendix B).

The podosome ring shape can sometimes be elongated, and so
the proteins in the ring may not be equally spaced from the podo-
some center. Thus, the calculations of relative positions were per-
formed for small sections of the ring the angular increment for
each section was set to 5.7�. The increment value was selected to
get on average about ten localizations of each protein in the seg-
ment (step 2 in Fig. A.2). The calculated average difference in posi-
tions of the two proteins in each segment was then weighted by
the number of points in given segment – so the regions with small
numbers of localizations would not influence strongly the end
result (step 3 in Fig. A.2).

3. Equation of the circle passing through three points

There is exactly one circle passing through three points (x1; y1),
(x2; y2), (x3; y3) which are not positioned on the same line. This
Fig. 1. A geometrical construction of a circle passing through three points. If we
draw two perpendicular lines crossing the segments connecting points, then their
crossing point will be the center of the circle.

Fig. 2. Histograms of the position difference between two analyzed proteins from podoso
position of paxillin from the vinculin position. For positive values paxillin is closer to the
standard localization microscopy.) (b) The relative positions of talin and vinculin (calcula
talin is closer to the podosome center, where for negative vinculin is closer. (Results for
circle can be constructed geometrically by drawing two perpendic-
ular lines crossing the segments between points, their crossing
point will be the center of the circle or arithmetically using equa-
tion of a circle:

x� x0ð Þ2 þ y� y0ð Þ2 ¼ r2 ð1Þ
By solving Eq. 1 using three points positioned on the circle we

found coordinates of the central point. The circle radius was later
found by calculating distance between the circle center point and
any of the three points on the circle (Fig. 1).
4. Results

The methodology developed for podosome ring analysis was
used to acquire preliminary results of protein positions in the podo-
some ring. The relative positions of vinculin-paxillin and vinculin-
talin were calculated. Vinculin and paxillin data sets were collected
using samples stained using tandem dye pairs and imaged using
Nikon N-STORM system. The talin-vinculin pair was imaged using
samples prepared with mCherry-talin construct and stained with
Alexa Fluor 488 (see [11] for details). The relative positions of two
proteins in each pair were calculated (see Section 2.3). The resulting
distributions of relative distance measurement are shown in Fig. 2.
For the vinculin-paxillin pair around 380 podosomes (from four
samples, Fig. 1a) and for the talin-vinculin pair 159 podosomes from
a single data set were analyzed (see Fig. 1b).

The results distribution for vinculin-paxillin is symmetric and it
has a very sharp peak and weak tails. Mean, median, standard devi-
ation and the 1st and 3rd quartiles were calculated for the results
distribution (see Table 1). The central tendency of this distribution
suggests a very small difference between positions of vinculin and
paxillin. Themean value is equal to 4 nmandmedian 1 nm, suggest-
ing that the paxillin is located further from the podosome core than
vinculin. However, themean andmedian values are still too small to
provide a definitive answer about protein arrangement. The central
tendency is smaller than the proteins size (minimal protein sizewas
calculated using methodology presented in [17], see Table C.1).

Use of fluorescent proteins expressed directly by the protein of
interest can remove the issue of the localization error due to dis-
tance between the detected fluorescent marker and marked pro-
tein, because they are expressed directly into the protein of
interest. However, the quantum yield of the fluorescent proteins
is smaller than that of organic dyes resulting in lower intensity
and more dense data sets. Analysis of denser data sets requires
more time and specially designed analysis methods for Example
3B [11]. Datasets with two of the podosome ring proteins vinculin
me rings. (a) The relative position was calculated as difference between the average
podosome core, for negative vinculin is closer. (Results for data sets acquired with
ted by subtracting average talin position from vinculin position). For positive values
3B method analyzed images).



Fig. 3. Histograms of the absolute positions of talin and vinculin in podosome rings.
Absolute positions were calculated from the podosome center.

12 A.D. Staszowska et al. /Methods 115 (2017) 9–16
stained with Alexa Fluor 488 and talin marked with mCherry was
imaged and analyzed using 3B method [11]. Analysis of 159 podo-
somes was performed to measure relative distance of talin and vin-
culin (measured as a difference between average vinculin position
and average talin position). The relative positions of talin in respect
to vinculin (see Fig. 1b) and absolute protein positions (see Fig. 3)
were calculated.

An analysis of more than 150 podosome rings provides an indi-
cation into talin and vinculin positions in the podosome ring. The
relative position measurements indicated that on average talin is
33 nm closer to the podosome center than vinculin. When consid-
ering median value the relative distance is 24 nm. It is possible to
analyze absolute distances of the protein positions in the ring,
however, the podosome sizes in analyzed data should be similar.

Here, the absolute protein distances (measured from protein
position to the podosome center) for talin and vinculin also suggest
that talin is closer to the podosome core (see Fig. 3 and Table 2).
We note that it is important to only compare measurements taken
with the same technique as differences in the ring thickness could
give rise to a bias in the measured radius (see Appendix D).
4.1. Discussion

We have presented a methodology for podosome identification
and calculation of the relative position of different proteins in
the ring. The podosome rings were identified in localization
microscopy data using a circular model of podosome structure.
Our method provides a success rate of 80% (similar to one delivered
Table 1
Statistical parameters of distributions of relative protein distance calculations for
vinculin-paxillin and vinculin-talin protein pairs.

Protein pair Mean relative
distance [nm]

Median relative
distance [nm]

Standard
deviation

Quartiles

Vinculin-paxillin 4 1 110 (�40, 30)
Vinculin-talin 33 24 110 (0, 100)

Table 2
Statistical parameters of results distributions of absolute positions of talin and
vinculin.

Protein mean distance
[nm]

Median distance
[nm]

Standard
deviation

Quartiles

Vinculin 421 394 120 (360, 500)
Talin 388 366 131 (300, 440)
for podosome identification in confocal images [12]). Using podo-
some identifications the protein localized positions were used for
calculations of relative protein distance. In order to build a complete
model of the positions of different proteins the positions of vinculin,
paxillin, and talin were compared with each other. This has enabled
us to build up information about the average positions of these pro-
teins in the podosome ring. Sincewe are looking at an average of the
relative positions, this method allows us to use data from different
localizations techniques. The data also yield absolute values, which
show some difference between the standard localization and 3B
methods for the same protein (see Fig. D.3). Resolving the origin
of these differences will require the comparison of multiple label-
ling and super-resolution techniques in the future.

The varying qualities of the images resulting from different
localization microscopy methods highlights that labelling, imaging
and image analysis methods can have a strong impact on data
quality and interpretation. The localization error can be caused
by a number of factors, starting with the method used to tag pro-
teins. The primary/secondary antibody construct separates the
detectable organic dye from the protein [18]. The organic dyes
are usually around 4 nm in size and the antibody length is around
5 nm, which means that the labeled protein localization can differ
up to 9 nm from the organic dye [19]. For this study the proteins of
interest were stained with tandem dye pairs which could poten-
tially introduce even bigger distance between the protein of inter-
est and the organic probe. Another issue is that, although the
monoclonal primary antibody used for staining does attach to a
specific location on the protein, the information about the exact
attachment sequence is not readily available. With primary/sec-
ondary labeling systems there can be clustering artefacts, as more
than one secondary can attach to each primary. Clustering artefacts
can also be caused by the reappearance of single molecules.
Although this affects the final number of molecules detected
[19], it is less important for the average position measurements
as reappearances are thought to be equally likely for all molecules.
Additionally, the thickness of the ring and density of labelling can
also influence a measurement of protein positions (see Appendix
D). Lastly, each localized molecule position is estimated using
information delivered by photons coming from the molecule. Thus,
the molecule position is estimated with uncertainty caused by a
limited number of photons detected and it is approximately inver-
sely proportional to the square root of the number of photons
detected [20], while the exact uncertainty of a localization can be
found from the Fisher information limit [21].

Overall, our analysis method provided more precise measure-
ments for data sets acquired for samples where at least one protein
was marked with fluorescent protein and the second with organic
dye. Previously discussed factors limiting accuracy for primary-
antibody staining are limited by use of only one dye to mark the
protein of interest (here vinculin). Use of more than one fluores-
cent protein to mark proteins in the podosome ring could lead to
even more precise measurement. The main source of localization
error – use of two antibodies to attach a fluorescent marker –
would be removed, because fluorescent markers would be synthe-
sized directly in the desired protein.

Most importantly the pipeline presented here is ready to be
used for a complete analysis of podosome ring protein positions.
More data sets will be required to map positions of vinculin, pax-
illin, and talin to reference their relative distance. It is also possible
to use software presented here for identification and analysis of a
wide range of other structures, imaged with localization micro-
scopy, which have circular ring shape, for example the nuclear pore
complex. Lastly, the pipeline can be used to identify structures
with different shapes after implementation of a different model
of structure. The new model would have to be optimized to best
describe the analyzed structure.
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Fig. A.2. The operation of a program calculating positions of proteins in the
Appendix A. Software flowcharts: Podosomes identification and
protein distance calculation
Fig. A.1. The podosome localization software operation. (1) The three points were
selected randomly from thedata set. (2) The radius anda center point of circle passing
by three pointswere calculated. (3) Filtering step to check if the fitted circlewas close
to the properties of the podosome ring and sample. If the filtering criteria were met
the circle center was saved (step 4) the steps 1–3were repeated. Otherwise a new set
of points was chosen (back to step 1). (5) The circle center positions were convolved
with the Gaussian and saved as an image. (6) The podosome centers were found by
identifying local maxima on the Gaussian image created in step 5.

podosome ring. The list of podosome centers made by the podosome center
localization program is used. For every podosome center the points which belong to
this podosome are identified using masking image (step 1). Then for an easier
calculation the coordinate system was changed from Cartesian to polar coordinates
(step 2) – the podosome center becomes a center of the polar coordinate system
and, each point belonging to this podosome is described by the distance to the
center and its angular position. The relative distance between two proteins was
calculated and saved (step 3).
Appendix B. Podosome identification and localization
microscopy images

Appendix C. The minimal protein volume and size

The minimal protein sizes were calculated according to the
methodology presented in [17]. These calculations provide an esti-
mation of the minimal size of the molecule and assume that it has
a globular shape, however this is not true for a number of the pro-
teins for example vinculin in its active state.
Appendix D. The measured ring radius

If the protein is evenly distributed through the podosome ring
then the average position calculated will be slightly biased to the
outer edge of the ring due to a higher number of molecules. How-
ever, if the fluorophores are equally likely to be anywhere on the
ring then the outer side of the ring will have lower density of local-
izations than the inner side. Here, we have investigated how the
size of this effect would vary with the ring thickness.

A number of datasets were simulated to account for the effect of
sampling. Two sizes of inner rings with different thickness were
simulated. These two types of rings correspond to the ratio of an
average radius and thickness of the rings, observed using samples
with two proteins labeled (here vinculin-paxillin) and one protein
transfected and the second labeled (vinculin-talin). This ratio was
estimated to be 0.6 (for vinculin-paxillin) and 0.1 (for vinculin-
talin). The points/single molecule localizations in the rings were
simulated with an equal density (see Fig. D.1). The averaged mea-
sured and expected radius are presented in Figure D.2.

The simulation indicated that the localization density (sam-
pling) can have an influence on the measured value of the ring
radius. For thicker rings the difference between the measured
and expected values are bigger than for a thinner radius. However,
since in our measurements we make comparisons between

http://doi.org/10.18742/RDM01-101


Fig. B.1. Super-resolution imaging of podosome samples. Top row: (a-b) Wide-field and super-resolution reconstructed images of the podosome rings labeled with tandem
dyes. Vinculin (green) was labeled with Cy2-Alexa Fluor 647 and paxillin (magenta) with Cy3-Alexa Fluor 647. Bottom row: (d-e) Wide-field and (f) 3B reconstructed super-
resolution image of the podosome rings. Vinculin (green) was labeled with Alexa Fluor 488 and talin (grey) was transfected with mCherry-talin construct. Scale bar: 1 lm.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. B.2. Podosome center identification for localization microscopy images. (a) Image of a cell displaying podosomes, vinculin (green) stained with Cy2-Alexa Fluor 647 and
paxillin (red) with Cy3-Alexa Fluor 647. (b) Possible podosome centers found using the algorithm after applying filtration step (the image was blurred for improved visibility).
(c) The center points were convolved with the Gaussian function. The actual centers of podosomes were found by identifying the local intensity maxima. (d) Identified
podosome centers (marked with squares) displayed over the localization microscopy image of the podosome rings. White squares mark correct podosome identifications,
green squares false positives, and white arrows false negatives (not identified podosomes). Scale bar 1 lm. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. D.2. An average ring radius measured for different ratio of thickness and radius of simulated podosomes. Two values of ratio were simulated to correspond to observed
average values observed in (a) 3B analyzed data sets and (b) labeled and QuickPALM analyzed localization microscopy. Podosome rings were simulated as two concentric
rings corresponding to two proteins imaged for this study. Dashed lines correspond to an expected value of radius (calculated as a middle value between the ring radius). An
average ring radius measured for different ratio of thickness and radius of simulated podosomes. (a) Measured average ring radius for a whole ring. (b) Inner and (c) outer
concentric ring simulated to correspond to two protein imaged with localization microscopy. Dashed lines correspond to an expected value of radius (calculated as a middle
value between the ring radius). Marked with blue for ration 0.6 and red for ratio 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. D.1. An example of simulated podosome rings. The rings were simulated as inner and outer concentric rings to correspond to the sample conditions. (a) The ration of
thickness to radius is 0.6 corresponding to typical podosome ring observed with labeled samples with localization microscopy. (b) Thickness to radius ratio 0.1 corresponding
to datasets analyzed with 3B method.

Fig. D.3. Comparison of the absolute positions of vinculin measured for localization
microscopy and 3B datasets. The distributions are similar, however the distribution
for localization microscopy data (blue) is shifted towards larger values. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table C.1
Minimal sizes of podosome ring proteins calculated using methodology presented in [17]. The minimal volume of space occupied
by a protein with a certain mass can be calculated using equation Rmin½nm� ¼ 0:066M

1
3, where M is the mass of the the protein,

measured in Daltons [17].

Protein Mass [kDa] Rmin [nm] Notes

Vinculin 117 3.23 Circular only in inactive state
Paxillin 69 2.71
Talin 270 4.27
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measurements with similar labeling and imaging techniques
which exhibit very similar thicknesses, we do not believe that this
will significantly bias our relative measurement.

There is, however a significant difference observed between the
thickness of the rings observed using standard localization micro-
scopy (thicker) and 3B (thinner). When directly comparing these
two measurements (see Fig. D.3 and Table D.1), it appears that
the 3B measurements are biased towards smaller values as might
be expected if the density on the ring is a factor. This demonstrates
the need to only compare results from similar techniques for the
relative measurements.
Table D.1
Statistical properties of the absolute positions of vinculin imaged with localization
microscopy and 3B.

Protein Mean distance
[nm]

Median
distance [nm]

Standard
deviation

Quartiles

Localization 512 489 142 (420,
580)

3B 421 394 120 (360,
500)
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In this paper we propose a workflow to detect and track mitotic cells in time-lapse microscopy image
sequences. In order to avoid the requirement for cell lines expressing fluorescent markers and the asso-
ciated phototoxicity, phase contrast microscopy is often preferred over fluorescence microscopy in live-
cell imaging. However, common specific image characteristics complicate image processing and impede
use of standard methods. Nevertheless, automated analysis is desirable due to manual analysis being sub-
jective, biased and extremely time-consuming for large data sets. Here, we present the following work-
flow based on mathematical imaging methods. In the first step, mitosis detection is performed by means
of the circular Hough transform. The obtained circular contour subsequently serves as an initialisation for
the tracking algorithm based on variational methods. It is sub-divided into two parts: in order to deter-
mine the beginning of the whole mitosis cycle, a backwards tracking procedure is performed. After that,
the cell is tracked forwards in time until the end of mitosis. As a result, the average of mitosis duration
and ratios of different cell fates (cell death, no division, division into two or more daughter cells) can be
measured and statistics on cell morphologies can be obtained. All of the tools are featured in the user-
friendly MATLAB�Graphical User Interface MitosisAnalyser.
� 2017 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Mathematical image analysis techniques have recently become
enormously important in biomedical research, which increasingly
needs to rely on information obtained from images. Applications
range from sparse sampling methods to enhance image acquisition
through structure-preserving image reconstruction to automated
analysis for objective interpretation of the data [1]. In cancer
research, observation of cell cultures in live-cell imaging experi-
ments by means of sophisticated light microscopy is a key tech-
nique for quality assessment of anti-cancer drugs [2,3]. In this
context, analysis of the mitotic phase plays a crucial role. The bal-
ance between mitosis and apoptosis is normally carefully regu-
lated, but many types of cancerous cells have evolved to allow
uncontrolled cell division. Hence drugs targeting mitosis are used
extensively during cancer chemotherapy. In order to evaluate the
effects of a given drug on mitosis, it is desirable to measure average
mitosis durations and distribution of possible outcomes such as
regular division into two daughter cells, apoptosis, division into
an abnormal number of daughter cells (one orP 3) and no division
at all [4,5].

Since performance of technical equipment such as microscopes
and associated hardware is constantly improving and large
amounts of data can be acquired in very short periods of time,
automated image processing tools are frequently favoured over
manual analysis, which is expensive and prone to error and bias.
Generally, experiments might last several days and images are
taken in a magnitude of minutes and from different positions. This
leads to a sampling frequency of hundreds of images per sequence
with an approximate size of 10002 pixels.

1.1. Image characteristics in phase contrast microscopy

In live-cell imaging experiments for anti-cancer drug assess-
ment, the imaging modality plays a key role. Observation of cell
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Fig. 1. Common image characteristics in phase contrast microscopy: shade-off
effect (a) and halo effect (b) (HeLa DMSO control cells).
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cultures originating from specific cell lines under the microscope
requires a particular setting ensuring that the cells do not die dur-
ing image acquisition and that they behave as naturally as possible
[6]. Here, phase contrast is often preferred to fluorescence micro-
scopy because the latter requires labelling or transgenic expression
of fluorescent markers, both causing phototoxicity and possibly
changes of cell behaviour [7–9]. As opposed to this, cells do not
need to be stained for phase contrast microscopy. Moreover, phase
shifts facilitate visualisation of even transparent specimens as
opposed to highlighting of individual specific cellular components
in fluorescence microscopy. We believe that one main advantage of
our proposed framework is that it can be applied to data acquired
with any standard phase-contrast microscope, which are prevalent
in many laboratories and more widespread than for instance
recently established quantitative phase imaging devices (e.g. Q-
Phase by Tescan).

There are two common image characteristics occurring in phase
contrast imaging (cf. Fig. 1). Both visual effects highly impede
image processing and standard algorithms are not applicable in a
straightforward manner. The shade-off effect leads to similar
intensities inside the cells and in the background. As a result, edges
are only weakly pronounced and imaging methods such as seg-
mentation relying on intensity gradient information (cf. Sec-
tion 2.2.2) often fail. Moreover, region-based methods assuming
that average intensities of object and background differ from one
another (cf. Section 2.2.3) are not applicable either. Secondly, the
halo effect is characterised by areas of high intensity surrounding
cell membranes. The brightness levels increase significantly imme-
diately before cells enter mitosis due to the fact that they round up,
form a nearly spherically-shaped volume and therefore the amount
of diffracted light increases. In addition, both effects prohibit appli-
cation of basic image pre-processing tools like for example thresh-
olding or histogram equalisation (cf. [10]).

1.2. Brief literature review

Over the past few years a lot of cell tracking frameworks have
been established (cf. [11]) and some publications also feature mito-
sis detection. In [12], a two-step cell tracking algorithm for phase
contrast images is presented, where the second step involves a
level-set-based variational method. However, analysis of the mito-
tic phase is not included in this framework. Another tracking
method based on extended mean-shift processes [13] is able to
incorporate cell divisions, but does not provide cell membrane seg-
mentation. In [14] an automated mitosis detection algorithm based
on a probabilistic model is presented, but it is not linked to cell
tracking. A combined mitosis detection and tracking framework
is established in [15], although cell outline segmentation is not
included. Li et al. [16] provide a comprehensive framework facili-
tating both tracking and lineage reconstruction of cells in phase
contrast image sequences. Moreover, they are able to distinguish
between mitotic and apoptotic events.

In addition, a number of commercial software packages for
semi- or fully automated analysis of microscopy images exist, for
example Volocity, Columbus (both PerkinElmer), Imaris (Bitplane),
ImageJ/Fiji [17] and Icy [18] (also cf. [19]). The last two are open
source platforms and the latter supports graphical protocols while
the former incorporates a macro language, allowing for individual-
isation and extension of integrated tools. However, the majority of
plugins and software packages are limited to analysis of fluores-
cence data.

A framework, which significantly influenced development of
our methods and served as a basis for our tracking algorithm,
was published in 2014 by Möller et al. [20]. It incorporates a
MATLAB�Graphical User Interface that enables semi-automated
tracking of cells in phase contrast microscopy time-series. The user
has to manually segment the cells of interest in the first frame of
the image sequence and can subsequently execute an automatic
tracking procedure consisting of two rough and refined segmenta-
tion steps. In the following section, the required theoretical foun-
dations of mathematical imaging methods are discussed, starting
with the concept of the circular Hough transform and continuing
with a review of segmentation and tracking methods leading to a
more detailed description of the above-mentioned framework.
For a more detailed discussion, we refer the interested reader to
[10] and the references therein.
2. Mathematical background

2.1. The circular Hough transform

The Hough transform is a method for automated straight line
recognition in images patented by Paul Hough in 1962 [21]. It
was further developed and generalised by Duda and Hart in 1972
[22]. More specifically, they extended the Hough transform to dif-
ferent types of parametrised curves and in particular, they applied
it to circle detection.

The common strategy is to transform points lying on straight
line segments or curves in the underlying image into a parameter
space. Its dimension depends on the number of variables required
in order to parametrise the sought-after curve. For the parametric
representation of a circle, which can be written as

r2 ¼ ðx� c1Þ2 þ ðy� c2Þ2; ð1Þ
the radius r as well as two centre coordinates ðc1; c2Þ are

required. Hence, the corresponding parameter space is three-
dimensional. Each point ðx; yÞ in the original image satisfying the
above equation for fixed r; c1 and c2 coincides with a cone in the
parameter space. Then, edge points of circular objects in the orig-
inal image correspond to intersecting cones and from detecting
those intersections in the parameter space one can again gather
circles in the image space.

For simplification, we fix the radius and consider the two-
dimensional case in Fig. 2. On the left, we have the image space,
i.e. the x–y-plane, and a circle in light blue with five arbitrary
points located on its edge highlighted in dark blue. All points fulfil
Eq. (1) for fixed centre coordinates ðc1; c2Þ. On the other hand, fix-
ing those specific values for c1 and c2 in the parameter space, i.e.
c1-c2-plane, on the right, and keeping x and y in (1) arbitrary, leads
to the dashed orange circles, where the corresponding edge points
are drawn in grey for orientation. All of the orange circles intersect
in one point, which exactly corresponds to the circle centre in the
original image. Hence, from intersections in the parameter space
one can reference back to circular objects in the image space.

A discussion on how the circular Hough transform is embedded
and implemented in MitosisAnalyser can be found in Section 3.1.
2.2. Image segmentation and tracking

In the following, we would like to introduce variational meth-
ods (cf. e.g. [23,24]) for imaging problems. The main aim is minimi-



Fig. 2. The circular Hough transform.
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sation of an energy functional modelling certain assumptions on
the given data and being defined as

Eð/Þ ¼ Dð/;wÞ þ aRð/Þ: ð2Þ
It is dependent on the solution /, which represents the pro-

cessed image to be obtained, and shall be minimised with respect
to /. The given image to be processed is denoted by w. The func-
tions / and w map from the rectangular image domain X � R2 to
R � Rd containing colour (d ¼ 3) or greyscale (d ¼ 1) intensity val-
ues. In the case of 8-bit phase contrast microscopy images, d ¼ 1
and R ¼ f0; . . . ;255g, where 0 and 255 correspond to black and
white, respectively.

The first part D on the right-hand side of (2) ensures data fide-
lity between / and w, i.e. the solution / should be reasonably close
to the original input data w. This can be obtained by minimising a
normmeasuring the distance between w and /, where the choice of
norm naturally depends on the given problem. The regulariser R in
(2) incorporates a priori knowledge about the function /. For
example, / could be constrained to be sufficiently smooth in a par-
ticular sense. The parameter a is weighting the two different terms
and thereby defines which one is considered to be more important.
Energy functionals can also consist of multiple data terms and reg-
ularisers. Eventually, a solution that minimises the energy func-
tional (2) attains a small value of D assuring high fidelity to the
original data, of course depending on the weighting. Similarly, a
solution which has a small value of R can be interpreted as having
a high coincidence with the incorporated prior assumptions.

Here, we focus on image segmentation. The goal is to divide a
given image into associated parts, e.g. object(s) and background.
This can be done by finding either the objects themselves or the
corresponding edges, which is then respectively called region-
based and edge-based segmentation. However, those two tasks
are very closely related and even coincide in the majority of cases.
Tracking can be viewed as an extension of image segmentation
because it describes the process of segmenting a sequence of
images or video. The goal of object or edge identification remains
the same, but the time-dependence is an additional challenge.

Below, we briefly discuss the level-set method and afterwards
present two well-established segmentation models incorporating
the former. Furthermore, we recap the methods in [20] building
upon the above and laying the foundations for our proposed track-
ing framework.

2.2.1. The level-set method
In 1988 the level-set method was introduced by Osher and

Sethian [25]. The key idea is to describe motion of a front by means
of a time-dependent partial differential equation. In variational
segmentation methods, energy minimisation corresponds to prop-
agation of such a front towards object boundaries. In two dimen-
sions, a segmentation curve c is modelled as the zero-level of a
three-dimensional level-set function /. Two benefits are straight-
forward numerical implementation without need of parametrisa-
tion and implicit modelling of topological changes of the curve.
The level-set evolution equation can be written as
@/
@t

¼ F� j r/ j

with curvature-dependent speed of movement F and suitable
initial and boundary conditions.

For implementation, the level-set function / is assigned nega-
tive values inside and positive values outside of the curve c,

/ðt; xÞ
< 0; if x is inside of c;

¼ 0; if x lies on c;
> 0; if x is outside of c;

8><
>: ð3Þ

commonly chosen to be the signed Euclidean distances (cf.
Fig. 3).

2.2.2. Geodesic active contours
Active contours or ‘‘snakes” have been developed and extended

for decades [26–30] and belong to the class of edge-based segmen-
tation methods. As the name suggests, the goal is to move segmen-
tation contours towards image edges and stop at boundaries of
objects to be segmented (e.g. by using the level-set method
described above). Geodesic active contours constitute a specific
type of active contours methods and have been introduced by
Caselles, Kimmel and Sapiro in 1997 [31]. The level-set formulation
reads

@/
@t

¼ r � g
r/

j r/ j
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
F

� j r/ j ð4Þ

with appropriate initial and boundary conditions and g is an
edge-detector function typically depending on the gradient magni-
tude of a smoothed version of a given image w. A frequently used
function is

g ¼ 1

1þ j rðGr � wðxÞÞj2
ð5Þ

with Gr being a Gaussian kernel with standard deviation r. The
function g is close to zero at edges, where the gradient magnitude
is high, and close or equal to one in homogeneous image regions,
where the gradient magnitude is nearly or equal to zero. Hence,
the segmentation curve, i.e. the zero-level of /, propagates towards
edges defined by g and once the edges are reached, evolution is
stopped. In the specific case of g ¼ 1, (4) coincides with mean cur-
vature motion.

Geodesic active contours are a well-suited method of choice for
segmentation if image edges are strongly pronounced or can other-
wise be appropriately identified by a suitable function g.

2.2.3. Active contours without edges
As the name suggests, the renowned model developed by Chan

and Vese [32] is a region-based segmentation method and in con-
trast to the model presented in 2.2.2, edge information is not taken
into account. It is rather based on the assumption that the under-
lying image can be partitioned into two regions of approximately
piecewise-constant intensities. In the level-set formulation the
variational energy functional reads

Eð/; c1; c2Þ ¼ k1

Z
X

wðxÞ � c1ð Þ2 1� Hð/ðxÞÞð Þdxþ k2

�
Z
X

wðxÞ � c2ð Þ2Hð/ðxÞÞdxþ l
Z
X
rHð/ðxÞÞj jdx

þ m
Z
X

1� Hð/ðxÞÞð Þdx; ð6Þ

which is to be minimised with respect to / as well as c1 and c2.
Recalling (3), we define the Heaviside function H as



Fig. 3. Level-set function.
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Hð/Þ ¼ 0; if / 6 0;
1; if / > 0;

�
ð7Þ

indicating the sign of the level-set function and therefore the
position relative to the segmentation curve.

In (6) the structure in (2) is resembled. The first two data terms
enforce a partition into two regions with intensities c1 inside and
c2 outside of the segmentation contour described by the zero-
level-set. The third and fourth terms are contour length and area
regularisers, respectively.

The optimal c1 and c2 can be directly calculated while keeping /
fixed:

c1 ¼
R
X wðxÞ 1� Hð/ðxÞÞð ÞdxR

X 1� Hð/ðxÞÞð Þdx ; c2 ¼
R
X wðxÞHð/ðxÞÞdxR

X Hð/ðxÞÞdx :

In order to find the optimal / and hence the sought-after seg-
mentation contour, the Euler–Lagrange equation defined as
@/
@t ¼ � @E

@/ ¼ 0 needs to be calculated, which leads to the evolution
equation

@/
@t

¼ deð/Þ k1 w� c1ð Þ2 � k2 w� c2ð Þ2 þ l r � r/
jr/j

� �
þ m

� �
; ð8Þ

where de is the following regularised version of the Dirac delta
function:

deð/Þ ¼ e
p

e2 þ /2� �
:

Eq. (8) can be numerically solved with a gradient descent
method.

This model is very advantageous for segmenting noisy images
with weakly pronounced or blurry edges as well as objects and
clustering structures of different intensities in comparison to the
background.

2.2.4. Tracking framework by Möller et al.
The cell tracking framework developed in [20] is sub-divided

into two steps. First, a rough segmentation based on the model
in Section 2.2.3 is performed. The associated energy functional
reads

Eð/; c1; c2Þ ¼ k1

Z
X

jv j � c1ð Þ2 1� Hð/ðxÞÞð Þdxþ k2

�
Z
X

jv j � c2ð Þ2Hð/ðxÞÞdxþ l
Z
X
jrHð/ðxÞÞjdx

þ m
Z
X

1� Hð/ðxÞÞð Þdx� Vold

� �2

: ð9Þ

In contrast to (6), the area or volume regularisation term
weighted by m is altered such that the current volume shall be close
to the previous volume Vold. Moreover, the data terms weighted by
k1 and k2 incorporate the normal velocity image j v j instead of the
image intensity function w:

j v j¼
@
@tw
�� ��
j rwje

; ð10Þ
where the expression in the denominator is a regularisation of
the gradient magnitude defined as

j rwje ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@x1wÞ2 þ ð@x2wÞ2 þ e2

q
for small e. The novelty here is

that in contrast to only considering the image intensity both spatial
and temporal information is used in order to perform the region-
based segmentation. Indeed, cells are expected to move between
subsequent frames. In addition, the gradient magnitude shall be
increased in comparison to background regions. Therefore the
incorporation of both temporal and spatial derivative provides a
better indicator of cellular interiors.

In a second step, a refinement is performed using the geodesic
active contours Eq. (4). The edge-detector function is customised
and mainly uses information obtained by the Laplacian of Gaussian
of the underlying image. In addition, topology is preserved
throughout the segmentation by using the simple points scheme
[33–35] and in order to reduce computational costs this is com-
bined with a narrow band method [36], which we inherit in our
framework as well.
3. MitosisAnalyser framework

In the following we present our proposed workflow designed in
order to facilitate mitosis analysis in live-cell phase contrast imag-
ing experiments. We specifically focused on applicability and
usability while providing a comprehensive tool that needs minimal
user interaction and parameter tuning. The MATLAB�Graphical
User Interface MitosisAnalyser (The corresponding code is available
at github.com/JoanaGrah/MitosisAnalyser.) provides a user-
friendly application, which involves sets of pre-determined param-
eters for different cell lines and has been designed for non-experts
in mathematical imaging.

In Fig. 4 the main application window is displayed on the top
left. The entire image sequence at hand can be inspected and after
analysis, contours are overlaid for immediate visualisation. More-
over, images can be examined and pre-processed by means of a
few basic tools (centre), although the latter did not turn out to
be necessary for our types of data. Parameters for both mitosis
detection and tracking can be reviewed, adapted and permanently
saved for different cell lines in another separate window (bottom
left). Mitosis detection can be run separately and produces inter-
mediate results, where all detected cells can be reviewed and
parameters can be adjusted as required. Consecutively, running
the cell tracking algorithm results in an estimate of average mitosis
duration and provides the possibility to survey further statistics
(right).

Fig. 5 summarises the entire workflow from image acquisition
to evaluation of results. First, live-cell imaging experiments are
conducted using light microscopy resulting in 2D greyscale image
sequences. Next, mitosis detection is performed. For each detected
cell, steps 3–5 are repeated. Starting at the point in time where the
cell is most circular, the circle-shaped contour serves as an initial-
isation for the segmentation. The tracking is then performed back-
wards in time, using slightly extended contours from previous
frames as initialisations. As soon as cell morphology changes, i.e.
area increases and circularity decreases below a predetermined
threshold, the algorithm stops and marks the point in time at hand
as start of mitosis. Subsequently, again starting from the detected
mitotic cell, tracking is identically performed forwards in time
until the cell fate can be determined. As already mentioned in Sec-
tion 1, different cases need to be distinguished from one another:
regular, abnormal and no division as well as apoptosis. The final
step comprises derivation of statistics on mitosis duration and cell
fate distribution as well as evaluation and interpretation thereof.

The double arrow connecting steps 1 and 5 indicates what is
intended to be subject of future research. Ideally, image analysis

http://github.com/JoanaGrah/MitosisAnalyser


Fig. 4. MitosisAnalyser MATLAB�GUI.

Fig. 5. Summary of MitosisAnalyser framework.

Fig. 6. Finding circles by means of the CHT. From left to right: Original greyscale
image, gradient image, edge pixels, accumulator matrix, transformed matrix.
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shall be performed in on-line time during image acquisition and
intermediate results shall be passed on to inform and influence
microscopy software. Consequently, this may in turn lead to
enhancement of image processing. Recently established concepts
of bilevel optimisation and parameter learning for variational
imaging models (cf. [37,38]) might supplement our framework.
3.1. Mitosis detection

In order to implement the circular Hough transform (CHT)
described in Section 2.1, both image and parameter space need
to be discretised. The former is naturally already represented as a
pixel grid or matrix of grey values. The latter needs to be artificially
discretised by binning values for r; c1 and c2 and the resulting rep-
resentation is called accumulator array. Once the CHT is performed
for all image pixels, the goal is to find peaks in the accumulator
array referring to circular objects.

There are several options in order to speed up the algorithm,
but we will only briefly discuss two of them. First, it is common
to perform edge detection on the image before applying the CHT,
since pixels lying on a circle very likely correspond to edge pixels.
An edge map can for instance be calculated by thresholding the
gradient magnitude image in order to obtain a binary image. Then,
only edge pixels are considered in the following steps. Further-
more, it is possible to reduce the accumulator array to two dimen-
sions using the so-called phase-coding method. The idea is using
complex values in the accumulator array with the radius informa-
tion encoded in the phase of the array entries. Both enhancements
are included in the built-in MATLAB�function imfindcircles.

The mitosis detection algorithm implemented into MitosisAnal-
yser uses this function in order to perform the CHT and search for
circular objects in the given image sequences. Fig. 6 visualises the
different steps from calculation of the gradient image, to identifica-
tion of edge pixels, to computation of the accumulator matrix and
transformation thereof by filtering and thresholding, to detection
of maxima.
This method turned out to be very robust and two main advan-
tages are that circles of different sizes can be found and even not
perfectly circularly shaped or overlapping objects can be detected.
At the beginning of analysis, the CHT is applied in every image of
the given image sequence in order to detect nearly circularly
shaped mitotic cells. Afterwards, the circles are sorted by signifi-
cance, which is related to the value of the detected peak in the cor-
responding accumulator array. The most significant ones are
picked while simultaneously ensuring that identical cells are nei-
ther detected multiple times in the same frame nor in consecutive
frames. The complete procedure is outlined in Supplementary
Algorithm 1.

3.2. Cell tracking

We have already introduced variational segmentation methods
in general as well as three models our framework is based on in
more detail in Section 2.2. Here, we would like to state the cell
tracking model we developed starting from the one presented in
Section 2.2.4. The energy functional reads:

Eð/; c1; c2Þ ¼ k1

Z
X

jv j � c1ð Þ2 1� Hð/ðxÞÞð Þdxþ k2

�
Z
X

jv j � c2ð Þ2 Hð/ðxÞÞð Þdx

þ l
Z
X
rHð/ðxÞÞj jdx

þ m
Z
X
gðwðxÞÞ rHð/ðxÞÞj jdx�x

1
2

� max
Z
X

1� Hð/ðxÞÞð Þdx� tarea;0
� 
2

; ð11Þ

with j v j and H defined as in (10) and (7), respectively.
The two terms weighted by k1 and k2 are identical to the ones in

(9). Instead of having two separate segmentation steps as in [20],
we integrate the edge-based term weighted by m into our energy
functional. However, using a common edge-detector function
based on the image gradient like the one in (5) was not suitable
for our purposes. We noticed that the gradient magnitude image
contains rather weakly pronounced image edges, which motivated
us to search for a better indicator of the cells’ interiors. We realised
that the cells are very inhomogeneous in contrast to the back-
ground and consequently, we decided to base the edge-detector
function on the local standard deviation of grey values in a 3�3-
neighbourhood around each pixel. Additionally smoothing the
underlying image with a standard Gaussian filter and rescaling
intensity values leads to an edge-detector function, which is able
to indicate main edges and attract the segmentation contour
towards them.

Furthermore, we add a standard length regularisation term
weighted by l. We complement our energy functional with an area
regularisation term that incorporates a priori information about
the approximate cell area and prevents contours from becoming
too small or too large. This penalty method facilitates incorpora-
tion of a constraint in the energy functional and in this case the
area shall not fall below the threshold tarea.
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Optimal parameters c1 and c2 can be calculated directly. We
numerically minimise (11) with respect to the level-set function
/ by using a gradient descent method (cf. 2.2.3). The third term
weighted by l is discretised using a combination of forwards,
backwards and central finite differences as proposed in [32]. We
obtain the most stable numerical results by applying central finite
differences to all operators contained in the fourth term weighted
by m. In Fig. 7 we visualise level-set evolution throughout the opti-
misation procedure.

In order to give an overview of the backwards and forwards
tracking algorithms incorporated in the mitosis analysis frame-
work, we state the procedures in Supplementary Algorithm 2 and
3. Together with the mitosis detection step they form the founda-
tion of the routines included in MitosisAnalyser.
Fig. 7. Level-set evolution from initialisation to final iteration.
4. Material and methods

The MitosisAnalyser framework is tested in three experimental
settings with MIA PaCa-2 cells, HeLa Aur A cells and T24 cells.
Below, a description of cell lines and chemicals is followed by
details on image acquisition and standard pre-processing.

4.1. Cell lines and chemicals

The FUCCI (Fluorescent Ubiquitination-based Cell Cycle Indica-
tor [39])-expressing MIA PaCa-2 cell line was generated using the
FastFUCCI reporter system and has previously been characterised
and described [40,41]. Cells were cultured in phenol red-free Dul-
becco’s modified Eagle’s medium (DMEM) supplemented with 10%
foetal calf serum (FBS).

T24 cells were acquired from CLS. The T24 cells were cultured in
DMEM/F12 (1:1) medium supplemented with 5% FBS.

HeLa Aur A cells, HeLa cells modified to over-express aurora
kinase A, were generated by Dr. Jennifer Harrington with Dr. David
Perera at the Medical Research Council Cancer Unit, Cambridge,
using the Flp-In T-REx system from Invitrogen as described before
[42]. The parental HeLa LacZeo/TO line, and pOG44 and pcDNA5/
FRT/TO plasmids were kindly provided by Professor Stephen Tay-
lor, University of Manchester. The parental line grows under selec-
tion with 50 lg/ml ZeocinTM(InvivoGen) and 4 lg/ml Blasticidin
(Invitrogen). HeLa Aur A cells were cultured in DMEM supple-
mented with 10% FBS and 4 lg/ml blasticidin (Invitrogen) and
200 lg/ml hygromycin (Sigma Aldrich). Transgene expression
was achieved by treatment with 1 lg/ml doxycycline (Sigma
Aldrich).

In all experiments, all cells were grown at 37 �C and 5% CO2 up
to a maximum of 20 passages and for fewer than 6 months follow-
ing resuscitation. They were also verified to be mycoplasma-free
using the Mycoprobe�Mycoplasma Detection Kit (R&D Systems).
Paclitaxel (Tocris Bioscience), MLN8237 (Stratech Scientific) and
Docetaxel (Sigma Aldrich) were dissolved in dimethylsulphoxide
(DMSO, Sigma) in aliquots of 30 mM, kept at �20 �C and used
within 3 months. Final DMSO concentrations were kept constant
in each experiment ð6 0:2%Þ.

4.2. Acquisition and processing of live-cell time-lapse sequences

Cells were seeded in l-Slide glass bottom dish (ibidi) and were
kept in a humidified chamber under cell culture conditions (37 �C,
5% CO2). For experiments with T24 and HeLa Aur A cells they were
cultured for 24 h before being treated with drugs or DMSO control.
They were then imaged for up to 72 h. Images were taken from
three to five fields of view per condition, every 5 min, using a Nikon
Eclipse TE2000-E microscope with a 20X (NA 0.45) long-working
distance air objective, equipped with a sCMOS Andor Neo camera
acquiring 2048� 2048 images, which have been binned by a factor
of two. Red and green fluorescence of the FUCCI-expressing cells
were captured using a pE-300white CoolLED source of light filtered
by Nikon FITC B-2E/C and TRITC G-2E/C filter cubes, respectively.
For processing, an equalisation of intensities over time was applied
to each channel, followed by a shading correction and a back-
ground subtraction, using the NIS-Elements software (Nikon).

5. Results and discussion

In this section we present and discuss results obtained by
applying MitosisAnalyser to the aforementioned experimental
live-cell imaging data. A list of parameters we chose can be found
in Supplementary Table 1. For each cell line, we established a
unique set of parameters. Nevertheless, the individual values are
in reasonable ranges and do not differ significantly from one
another. We did not follow a specific parameter choice rule, but
rather tested various combinations and manually picked the best
performing ones.

5.1. MIA PaCa-2 cells

In a multi-modal experiment with FUCCI-expressing MIA PaCa-
2 cells, both phase contrast images and fluorescence data were
acquired. The latter consist of two channels with red and green
intensities corresponding to CDT1 and Geminin signals, respec-
tively. In this case we do use fluorescence microscopy imaging data
as well, but we would like to stress that this analysis would not
have been possible without the mitosis detection and tracking per-
formed on the phase contrast data. As before, mitotic cells are
detected using the circular Hough transform applied to the phase
contrast images. Cell tracking is performed on the phase contrast
images as well, but in addition, information provided by the green
fluorescent data channel is used. More specifically, stopping crite-
ria for both backwards and forwards tracking are based on green
fluorescent intensity distributions indicating different stages of
the cell cycle, which can be observed and is described in more
detail in Supplementary Fig. 1.

The whole data set consists of nine imaging positions, where
three at a time correspond to DMSO control, treatment with 3nM
paclitaxel and treatment with 30nM paclitaxel. Fig. 8 visualises
exemplary courses of the mitotic phase, which could be measured
by means of our proposed workflow. Table 1 presents estimated
average mitosis durations for the three different classes of data.
Indeed, the average duration of 51 min for the control is consistent
with that obtained from manual scoring (cf. [41], Figure S3D).
Moreover, we can observe a dose-dependent increase in mitotic



Fig. 8. Three examples of mitotic events detected for FUCCI MIA PaCa-2 ‘‘DMSO
control”, ‘‘treatment with 3 nM paclitaxel” and ‘‘treatment with 30 nM paclitaxel”
data (from top to bottom).

Fig. 9. Five examples of mitotic events detected for HeLa Aur A ‘‘DMSO control”
(one each in row one and two), ‘‘treatment with 25 nM MLN8237” (one each in row
three and four), and ‘‘combined treatment with 25 nM MLN8237 and 0.75 nM
paclitaxel” (bottom row) data.
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duration for the two treatments, which was anticipated, since
paclitaxel leads to mitotic arrest.

5.2. HeLa cells

In the following we discuss results achieved by applying Mito-
sisAnalyser to sequences of phase contrast microscopy images
showing HeLa Aur A cells. In addition to DMSO control data, cells
have been treated with 25 nMMLN8237 (MLN), 0.75 nM paclitaxel
(P), 30 nM paclitaxel (P) and with a combination of 25 nM
MLN8237 and 0.75 nM paclitaxel (combined).

Fig. 9 shows exemplary results for detected and tracked mitotic
events, where DMSO control cells divide regularly into two daugh-
ter cells. Particular treatments are expected to enhance multipolar
mitosis and indeed our framework was able to depict the three
daughter cells in each of the three examples (bottom rows) pre-
sented. In addition, mitosis duration is extended, as anticipated,
for treated cells and specifically for the combined treatment. The
segmentation of the cell membranes seems to work well by visual
inspection, even in the case of touching neighbouring cells.

Table 2 summarises average mitosis durations that have been
estimated for the different treatments. Again, the results are
according to our expectations, i.e. mitosis durations for treated
cells are extended in comparison to DMSO control.

5.3. T24 cells

For this data set we wanted to focus on cell fate determination
and in order to distinguish between different fates in the T24 cell
data set we combine the MitosisAnalyser framework with basic
classification techniques. In particular, we manually segmented
three different classes of cells: mitotic and apoptotic ones as well
as cells in their normal state outside of the mitotic cell cycle phase
(see Fig. 10).

In Fig. 11 we show boxplots of nine features based on morphol-
ogy as well as intensity values we use for classification. Those
include area, perimeter and circularity. Furthermore, we calculate
both mean and standard deviation of the histogram. In addition,
we consider the maximum of the gradient magnitude, the mean
as well as the total variation of the local standard deviation and
the total variation of the grey values. One can clearly observe that
cells in mitosis have much higher circularity than in any other
state. Flat cells differ significantly from the other two classes with
respect to features based on intensity values.

In order to train a classifier solely based on those few features
we used the MATLAB�Machine Learning Toolbox and its accompa-
nying Classification Learner App. We chose a nearest-neighbour
classifier with the number of neighbours set to 1 using Euclidean
Table 1
Average Mitosis Durations (AMD) for MIA PaCa-2 cell line in minutes.

DMSO control

Pos 1 Pos 2 Pos 3 Pos 4

Events 14 11 13 12
AMD 51 41 60 52
Total AMD 51
distances and equal distance weights, which yielded a classifica-
tion accuracy of 93.3% (cf. Supplementary Fig. 2).

Pie charts for T24 cell fate distributions for different drug treat-
ments as preliminary results can be found in Supplementary Fig. 3,
although integration of classification techniques will be subject of
more extensive future research.

5.4. Validation

In order to validate performance of the segmentation, we com-
pare results obtained with MitosisAnalyser with blind manual seg-
mentation. For that purpose, we choose two different error
measures: The Jaccard Similarity Coefficient (JSC) [43] and the
Modified Hausdorff Distance (MHD) [44], which we are going to
define in the following.

Let A and M be the sets of pixels included in the automated and
manual segmentation mask, respectively. The JSC is defined as

JSCðA;MÞ ¼ jA \Mj
jA [Mj ;

where A \M denotes the intersection of sets A and M, which
contains pixels that are elements of both A and M. The union of
sets A and M, denoted by A [M, contains pixels that are elements
of A or M, i.e. elements either only of A or only of M or of A \M. The
MHD is a generalisation of the Hausdorff distance, which is com-
monly used to measure distance between shapes. It is defined as

MHDðA;MÞ ¼ max
1

j A j
X
a2A

dða;MÞ; 1
j M j

X
m2M

dðm;AÞ
( )

;

where dða;MÞ ¼ minm2Mka�mk with Euclidean distance k � k.
The JSC assumes values between 0 and 1 and the closer it is to 1

the better is the segmentation quality. The MHD on the other hand
is equal to 0 if two shapes coincide and the larger the number, the
farther they differ from each other. In Fig. 12 and Supplementary
Table 2 we can observe that on average, MitosisAnalyser performs
better than the standard Chan-Vese method (cf. Section 2.2.3)
and Geodesic Active Contours based on the gradient magnitude
(cf. Section 2.2.2) (both performed using the MATLAB imageSeg-

menter application) compared to manual segmentation of ten
apoptotic T24 cell images (cf. Fig. 10,, top row). Moreover, Fig. 13
shows successful segmentation of flat T24 cells affected by the
shade-off effect in phase contrast microscopy images using Mito-
3nM paclitaxel 30nM paclitaxel

Pos 5 Pos 6 Pos 7 Pos 8 Pos 9

8 19 10 13 35
88 94 146 104 112
78 121



Table 2
Average Mitosis Durations (AMD) for HeLa cell line in minutes.

DMSO 25 nM MLN 0.75 nM P 30 nM P Combined

Events 44 75 10 35 43
AMD 58 73 68 116 105

Fig. 10. Three manually segmented classes of T24 cells: apoptotic (top row), flat/
normal (middle row) and mitotic (bottom row).

Fig. 11. Key features for cell type classification.

Fig. 12. Boxplots showing JSC (left) and MHD (right) measures for segmentation of
apoptotic cell images by MitosisAnalyser (MiA), the model by Chan and Vese (CV)
and geodesic active contours (GAC) in comparison with manual segmentation.

Fig. 13. Exemplary segmentations for flat cells in phase contrast images: Manual
segmentation (magenta) is compared to performance of MitosisAnalyser (cyan). The
average JSC and MHD values for the four images are 0.8377 and 0.3648,
respectively.
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sisAnalyser, where both the method by Chan and Vese and geodesic
active contours failed.

5.5. Conclusions

We have used concepts of mathematical imaging including the
circular Hough transform and variational tracking methods in
order to develop a framework that aims at detecting mitotic events
and segmenting cells in phase contrast microscopy images, whilst
overcoming the difficulties associated with those images. Originat-
ing from the models presented in Section 2, we developed a cus-
tomised workflow for mitosis analysis in live-cell imaging
experiments performed in cancer research and discussed results
we obtained by applying our methods to different cell line data.
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1. Introduction

Detecting multiple instances of a given object from images is a
major issue in computer vision as it often represents the first step
towards image understanding and interpretation. For example, in
remote sensing, the description of land cover (especially when
dealing with high resolution images) relies on a previous detection
of objects in the scene such as buildings, trees or roads. In compu-
tational biology this problem also appears frequently in order to
evaluate, characterize or classify a population of biological objects
such as cells, vesicles within cells or RNA/protein complexes [1,2].
A particular case can be the initialization of a tracking algorithm to
study, for example, vesicles trajectories [3]. In addressing biologi-
cal applications some specific issues have to be considered due
to the variability of biological material within and between differ-
ent classes of objects. For example, objects representing other bio-
logical material may be mixed with the actually targeted ones, thus
the image cannot be simply modeled as a collection of objects of
interest in a background. Besides, the size of these targeted objects
is sometimes close to the voxel size, making the differentiation
between objects and noise particularly complicated. In this paper,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2016.09.009&domain=pdf
http://dx.doi.org/10.1016/j.ymeth.2016.09.009
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we present a methodological framework that provides tools to
solve the different issues raised by multiple biological objects
detection from microscopic images. We will particularly develop
the following:

Issue 1: How to address the intensity heterogeneity that pre-
vents from considering a global threshold on the inten-
sity in order to separate to objects from background ?

Issue 2: How to deal with nuisance objects that do not belong
to the targeted class of objects but cannot be consid-
ered as background neither ?

Issue 3: How to deal with a high density of objects that gener-
ates clusters of possibly overlapping objects ?

Issue 4: How to handle the shape variability between objects ?
Issue 5: How to detect objects that consist of a few pixels ?
Issue 6: How to deal with both 2D and 3D datasets ?

Throughout the literature that addresses this problem, we dis-
tinguish both global as well as local methods. Global methods usu-
ally consider a threshold to separate the background from pixels
belonging to objects. Each n-connected group of pixels tagged as
object is then analyzed. A watershed segmentation is then per-
formed on the distance map inside each component to split it into
individual objects. Each individual object is finally selected or
rejected depending on its size and shape, considering for example
a circularity parameter. This classical approach is usually the one
proposed by common image analysis software such as Matlab,
the particle analyzer of Fiji or Cell Profiler [4,5]. Nevertheless, issue
1 is not addressed within this approach. In consequence, in order to
remove background variation, a high pass filter has to be previ-
ously applied. Issues 2,3 and 4 are partially solved if the objects
of interest have more or less a circular shape and can be bounded
by particular minimum and maximum sizes that discriminate
them from nuisance objects. The shape of the detected object is
arbitrarily defined by the watershed algorithm, so issue 4 is not
addressed. Finally, issue 5 is not addressed in case of noisy data.
In local approaches, a first step usually consists of seeds detection.
A growing process then extends each seed to define an object
using, for example an active contour or marker controlled water-
shed. This process allows the object shape recovery only if they
are initially properly localized by the seeds. Therefore, the seeds
detection is crucial. Some strategies to obtain these seeds include
local maxima after a global threshold or a template matching pro-
cess [6]. Issue 1 can be partially solved by considering a low
threshold when seeds are defined by local maxima. Issue 2 is not
addressed whereas clusters are split arbitrarily when two growing
objects intersect.

In this paper we present the marked point process modeling
(MPP) as a framework to solve the different issues described above.
These models derived from the application of point processes to
spatial statistics. They have proven their efficiency and robustness
in various fields of computer vision in order to evaluate popula-
tions of, for example, trees, buildings, roads, people in a crowd or
flamingos. A survey of marked point processes applied to image
analysis can be found in [7]. Herein we focus on biological images
and show how to derive specific models to accurately address the
different issues mentioned above.
Fig. 1. Example of an image containing a collection of objects on a background.
2. Method

2.1. Marked Point Process

Let us consider an object space O � Rm that contains the geo-
metrical description of the object of interest. For example if we
consider the set of disks with radius bounded by rmin and rmax, then
O ¼ ½rmin; rmax� � R.
We consider the configuration set X as the union of all the pos-
sible finite sets of objects lying in a subspace S of Rn defined by the
support of the image:

X ¼
[1
i¼0

Xi; ð1Þ

where

Xi ¼ fx1; . . . ;xig 2 ðS � OÞi ð2Þ
is the set of configurations containing exactly i objects,
xi ¼ ðpi;miÞ; pi 2 S is the center of the object and mi 2 O are the
marks. We define a marked point process [8] by athe Gibbs density
as follows:

8x 2 X; dpðxÞ ¼ 1
Z
exp �UðxÞ½ �dp0ðxÞ; ð3Þ

where p0 is the measure of the Poisson process and UðxÞ is the
energy function that evaluates each configuration of objects. The
lower the energy function value the more probable is the particular
object configuration. In the context of image analysis, the energy
function embeds a data term, UDðXjIÞ, that evaluates the consis-
tency of any object with respect to the data I as well as a prior,
UPðXÞ, that reflects constraints on the objects geometry and repar-
tition in the image plane.

Let us consider a first example, shown in Fig. 1, where the image
fIðsÞ; s 2 L} on the lattice L consists of circular cells on a dark back-
ground. We first define a data term that measures the contrast
between a candidate object and its neighborhood as follows:

PðIjX ¼ fx1; . . . ;xi; . . . ;xngÞ ¼ exp�UDðXjIÞ with ð4Þ

UDðXjIÞ ¼
Xn
i¼1

udðxiÞ;

where udðxiÞ is a contrast term we defined as:

udðxiÞ ¼
1� dðxiÞ

d0
if dðxiÞ < d0

exp d0�dðxiÞ
3d0

� �
� 1 otherwise:

8<
: ð5Þ

In Eq. (5), dðxiÞ is a distance between pixels in the objectxi and
pixels in the external boundary @xi (see Fig. 2). For example the
Bhattacharrya distance is defined by:

dðxÞ ¼ 1
4
ðlo � lbÞ2
r2

o þ r2
b

þ 1
2
log

r2
o þ r2

b

2rorb

� �
; ð6Þ

where lo (resp. lb) and r2
o (resp. r2

b) are the mean and variance of
pixels in x (resp. @x.

In order to prevent object overlap as much as possible, we add
the following prior:



Fig. 2. Discretization of a disk x and its neighborhood @x.
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UPðXÞ ¼
X

i;j:xi\xj–;
f ðxi;xjÞ with ð7Þ
f ðxi;xjÞ ¼
1 if jxi\xj j

min jxi j;jxj jð Þ > o

0 otherwise

8<
:

where jxij refers to the size of object i and o is the maximum over-
lap ratio permitted. The solution is then defined as the minimizer of
the global energy:

UðXÞ ¼ UPðXÞ þ UDðXjIÞ: ð8Þ
2.2. Optimization

Two practical issues arise when analyzing this problem. On the
first place, the energy UðXÞ we want to minimize is not convex.
Secondly, the normalizing constant (or partition function) Z
defined in Eq. (3) is analytically and numerically intractable. There-
fore, the optimization is classically performed using a simulated
annealing coupled with a sampling algorithm. This last that can
be, for example, jump and diffusion processes or MCMC
approaches, particularly Reversible Jump MCMC (RJMCMC), as
the number of objects is unknown. More recently, the multiple
births and deaths (MBD) algorithm based on a discretization
scheme of a stochastic differential equation has been proposed
[9]. As an advantage, this algorithm permits to address a whole
set of objects in the same iteration. Besides, there is no rejection
in the birth step that allows any new objects introduction at every
stage of the simulated annealing. Some faster suboptimal algo-
rithms have also been proposed such as the multiple births and
Fig. 3. A noise free example of image cells (left) and the detection obtained
cut (MBC). In this paper we consider the MBD algorithm as the
MBC algorithm is restricted to particular energy functions.

The MBC algorithm alternates births and deaths steps consist-
ing in adding new objects and removing some of them with a cer-
tain probability that depends on the specific value of the energy
function:

Algorithm 1 Multiple Births and Deaths

1. Intialize the objects configuration with the empty set X0 ¼ ;,
set T ¼ T0; i ¼ 0 and d ¼ d0

2. Births step: Set i ¼ iþ 1, Generate randomly a set of objects

Bi ¼ fbj
i g and compute the data term for each object udðx j

i Þ.
The location and the marks of objects are drawn from a uniform
distribution and the number of objects is drawn from a Poisson
law of parameter d� jLj; jLj being the number of pixels. Set

Xb
i ¼ Xi�1

S
Bi.

3. Sorting step: Sort the objects in Xb
i by descending order of the

data energy (from the ‘‘worst” to the ‘‘best”).

4. Death step: For each object fxj 2 Xb
i g taken sequentially in the

ordered list, remove xj from Xb
i with probability p ¼ daðxj ;X

b
i Þ

1þdaðxj ;X
b
i Þ

such that
using t
aðxj;X
b
i Þ ¼ exp�1

T
UðXb

i =fxjgÞ � UðXb
i Þ

� �
5. If not converged decrease T (resp. d) by a factor aT (resp. ad) and
go back to step 2.

The convergence has been theoretically proved in [17], and is
empirically obtained either after a fix number of iterations or when
the configuration does not change during a couple of iterations.

2.3. Results

We validate this model on several synthetic images of cells sim-
ulated with the ‘‘Simcep” algorithm [10]. To do so, we compare the
performance of the proposed MPP approach with the classical
approach proposed by software such as Fiji or Matlab. This last
one consists in binarizing the image and splitting the clusters using
the watershed algorithm on the distance map. Resulting connected
components are selected as objects depending on their size and a
circularity coefficient. We first consider a noise free image of cells
given on Fig. 3, and then we add noise on Fig. 4. Finally we increase
the background heterogeneity due to the light source (see Figs. 5
and 6).

With this first model we partially address the different chal-
lenges (issues 1, 2 and 3). The main advantage of this approach is
he fiji particle analyser (middle) and the MPP approach (right).



Fig. 4. A noisy example of image cells (left) and the detection obtained using the fiji particle analyser (middle) and the MPP approach (right).

Fig. 5. A first exemple of an heterogeneous background (top left), results with the MPP approach (top right) and with two parameter settings for the fiji particle analyser
(bottom left and right).
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that the data is taken into account at the object level. In the data
term, statistics of pixels contained in the whole object are consid-
ered providing a high robustness with respect to noise (see Fig. 4).
Besides, we consider a local contrast term between the object and
the surrounding pixels that gives robustness with respect to the
background heterogeneity (see Figs. 5 and 6) compared to the clas-
sic approach. Finally, the shape model facilitates the discrimination
between objects of interest and nuisance objects. Notice however
that in the case of disk shaped objects the watershed algorithm
(classic approach) performs quite well on the task of splitting clus-
ters (see Fig. 3). However, this performance decreases rapidly with
noise or background heterogeneity while the MPP approach
remains robust. Finally, with this simple model, only circular cells
are addressed. Several extensions have to be considered in order to
generalize the approach.

3. Discussion

We have shown in Section 2.3 that the MPP approach gives an
answer to issues 1, 2 and, partially, 3. By considering objects
instead of pixels as unknown variables we obtain a robust detec-
tion with respect to noise and to non homogeneous background.
However, at this stage issues 4, 5 and 6 have not been yet
addressed. In this section we discuss several extensions to the pre-
vious model that take into consideration the shape and size vari-
ability of the objects within the same MPP framework.



Fig. 6. A stongly heterogeneous background (left), results obtained the fiji particle analyser (midlle) and with the MPP approach (right).
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3.1. More general shapes

In Section 2, we have considered an object space consisting of
disks. However, it is straightforward to take into account more
complex parametric spaces in order to define other geometries.
For example, if we consider the image given on Fig. 7, it is clear that
a model based on disks would fail to detect the cells. The particle
analyzer based on the distance transform (Fiji) is also inadequate
as shown on Fig. 7 (middle). This problem can be solved within
the marked point process framework by considering ellipses as
objects, such that the object space is defined by
O ¼ ½amin; amax� � ½bmin; bmax� � ½0;p�. We can see on the MPP result
Fig. 8. Spheroid containing cells of various shapes (left), results obtained with the Fij

Fig. 7. Example of elliptic cells (left), results obtained by the Fi
on Fig. 7 (right) that the objects have been correctly detected and
delineated, contrary to the particle analyzer approach, that cannot
correctly split clusters of ellipses. Several parametric shapes have
been proposed in the literature including rectangles, segments or
superquadrics. The mix of two shape spaces such as disks and
ellipses is also possible. However, the parametric space that
defines the shapes should have a low dimension, typically lower
than 5, to avoid computational burden. This can be limiting in case
of complex shapes such as the cells on Fig. 8, or when the objects
are composed of a few pixels, causing the discretization to lead to a
poor approximation of the parametric shapes. To overcome this
limit, it has been proposed to define the object space as a
i particle analyser (middle) and the MPP approach based on a dictionary (right).

ji particle analyser (middle) and the MPP approach (right).



Fig. 9. An example of small particles within cells (top left), ground truth (top right), results obtained by the wavelet approach proposed by Icy (bottom left) and by the MPP
approach (bottom right)- Green: true positive – Blue: false negative – Red: false positve. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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dictionary of precomputed shapes. Such a dictionary can be
obtained from previous segmentation maps as in [11] (see the
result on Fig. 8) or by constructing an exhaustive description of
shapes included in a small bounding box. On Fig. 8 we can see that
the use of a dictionary combining shapes obtained by the particle
analyzer algorithm and by an active contour approach allows to
select the most relevant ones from each method and for different
parameters, thus improving the global result. On Fig. 9, the dic-
tionary is defined by the whole set of convex shapes bounded by
5� 5 pixels square [12]. This last approach has been proven to
overcome state of the art detection techniques, such as the one
included in Icy which is based on wavelets (see Fig. 9 middle and
right).

3.2. Energy function

The energy function is composed of a data term that fits the
objects onto the image and a prior that favors or imposes proper-
ties on the whole configuration. In Section 2 we have considered
a contrast term based on the Bhattacharrya distance between the
pixel intensity inside the object and in a crown surrounding it. Sev-
eral formulations to define the data term can be found that com-
pare the mean, the median or the maximum value between the
object and its neighborhood. These terms are based on the contrast
norm of the object with respect to the surrounding pixels that are
supposed to belong to the background. Another class of data terms
is based on the scalar product of the normalized intensity gradient
on the object frontier and the normal of the shape along this fron-
tier. This notably leads to models that are invariant with respect to
the image contrast [13]. In this setting the data term is entirely
based on the object geometry (in the data) independently on the
contrast. This is therefore fully adapted to cases when the contrast
is not constant within the image due to heterogeneous illumina-
tion in the background or variability in the object intensity. The
second part of the energy function consists of prior information.
In this paper we have considered a repulsive term that prevents
objects overlap. Some attractive properties can also be defined,
for example, to favor clusters of objects or to align them by sharing
similar angles.

3.3. Computational considerations

The Multiple Birth and Death algorithm has been proposed in
[9] as an alternative to the classical RJMCMC scheme. As for the
RJMCMC, the convergence to the configuration that minimizes
the energy has been proven in a simulated annealing context
[17]. Regarding the MBD algorithm, its main advantage lies in
the birth step, where several objects are added simultaneously to
the configuration independently of the temperature. Therefore,
even at a low temperature, the system can investigate new objects
that locally increase the energy. To improve the convergence
speed, one can introduce a birth map to favor introducing new
objects with a higher probability in relevant locations within the
image. For example this birth map can be based on a precomputa-
tion of the data terms for each possible location of the objects. A
tradeoff needs then to be found between the complexity of the
birth map computation and the gain in terms of number of itera-
tions before convergence. Some suboptimal algorithms have been
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proposed in order to speed up the convergence. For these algo-
rithms there is no guarantee to reach the global optimizer, but they
have proven to be efficient in practice. As for Markov Random
Fields, the graph cut algorithm has been employed by replacing
the death step in the MBD by a graph cut to select the most rele-
vant objects. This has lead to the Multiple Birth and Cut (MBC)
algorithm [18]. The main advantage of the MBC over RJMCMC
and MBD schemes is that it prevents from embedding the algo-
rithm into a simulating annealing scheme thus avoiding the cali-
bration of the cooling parameters (initial value and decreasing
coefficient of the temperature). To speed up the convergence speed
one can consider a deterministic version of the MBC algorithm that
can be compared to the ICM for Markov Random Fields. It simply
consists of the removal of an object - during the death step - in
the case that this change in the configuration induces an energy
decreasing. A quantitative comparison between stochastic sam-
plers, in terms of accuracy and computational time, is given in
[19] on a particular application. However, the efficiency of these
algorithms highly depends on their design (kernel choice in case
of RJMCMC, birth map in case of MBD), thus each case needs to
be specially studied.

3.4. Further MPP applications to biology imagery

In this paper we focus on object detection. However, other
problems can be addressed within the marked point process
framework as it has been proposed for remote sensing applica-
tions. In this particular context, a hierarchical model has been pro-
posed by [14] to model groups of vehicles (i.e.: each vehicle is a
first order object and a group of them is a second object order).
Such a multi-level model can be applied to study populations of
vesicles within cells. An extra dimension representing time can
be added to MPP models in order to obtain an object tracking algo-
rithm [15]. MPP can thus be employed to study vesicles trajecto-
ries. Finally, the transition between two states of a given object,
for example a cell from alive to dead, can be addressed through
change detection models [16].

4. Conclusion

The MPP approach, originally developed in the domain of spa-
tial statistics for the modeling of populations, has been more
recently successfully applied to solve image analysis problems
and, more particularly, multiple object detection from images. In
this paper we have shown that this framework is well suited to
perform object detection in biological imagery. The different issues
raised by these applications can be satisfactorily addressed with
MPP modeling. This includes noise, shape variability and back-
ground heterogeneity. The non convexity of the functional to be
minimized may lead to heavy computational time, especially when
treating 3D datasets. However, some sub-optimal algorithms have
been proposed that make the approach usable in practice. Some
issues remain unsolved concerning MPP. Shapes are currently
defined in a low dimensional parametric space or in a predefined
dictionary. To consider general shapes defined in a shape space,
as for example in [20], is a very challenging issue. Apart modeling
issues we can also mention improvement in the optimization to
speed up the convergence or to define parallel implementation
[19]. Finally, estimating the parameters is still a largely open issue
[21].
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Confocal microscopy is a powerful tool for the study of cellular receptor trafficking and endocytosis.
Unbiased and robust image analysis workflows are required for the identification, and study, of aberrant
trafficking. After a brief review of related strategies, identifying both good and bad practice, customwork-
flows for the analysis of live cell 3D time-lapse data are presented. Strategies for data pre-processing,
including denoising and background subtraction are considered. We use a 3D level set protocol to accu-
rately segment cells using only the signal from fluorescently labelled receptor. A protocol for the quan-
tification of changes to subcellular receptor distribution over time is then presented. As an example,
ligand stimulated trafficking of epidermal growth factor receptor (EGFR) is shown to be significantly
reduced in both AG1478 and Dynasore treated cells. Protocols for the quantitative analysis of colocaliza-
tion between receptor and endosomes are also introduced, including strategies for signal isolation and
statistical testing. By calculating the Manders and Pearson coefficients, both co-occurrence and correla-
tion can be assessed. A statistically significant decrease in the level of ligand induced co-occurrence
between EGFR and rab5 positive endosomes is demonstrated for both the AG1478 and Dynasore treated
cells relative to a control. Finally, a strategy for the visualisation of co-occurrence is presented, which pro-
vides an unbiased alternative to colour overlays.

� 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The signalling and trafficking of cellular receptors are highly
interlinked processes [1–3]. Ligand induced signalling regulates
endocytosis and receptor trafficking within the endocytic network,
which in turn attenuates receptor signalling. Moreover, the
hypothesis of signalling endosomes, for which there is now exten-
sive evidence, implies that the subcellular location of activated
receptor triggers distinct signalling responses [3–8]. Homeostatic
receptor trafficking is essential for organism development [9,10],
and aberrant activity is implicated in numerous diseases [11,12].

Fluorescence microscopy is commonly used to study ligand
induced changes to the quantity of receptor located at the plasma
membrane [13], and also colocalization with subcellular struc-
tures, such as endosomes [14]. Developing a proper understanding
of these experiments requires quantitative, unbiased, and repro-
ducible analysis protocols. In this paper, with these requirements
in mind, we describe fully automated image analysis workflows
for analysing live cell 3D time-lapse data. Confocal microscopy is
used exclusively, but all protocols are equally applicable to decon-
volved widefield images [15]. A HeLa cell line expressing fluores-
cent protein tagged constructs for both epidermal growth factor
receptor (EGFR) and rab5 is used as a model system [16]. rab5 is
an early endosome associated GTPase and key regulator of receptor
trafficking [17]. Inhibitors for EGFR kinase (AG1478) [18] and
dynamin (Dynasore) [19] are used to perturb the ligand (EGF)
induced trafficking response. We demonstrate the effectiveness
of the described workflows, and show that both drug treatments
perturb EGFR trafficking and colocalization with rab5 positive
endosomes.

The rest of the paper is structured as follows. In Section 2 a brief
review of related approaches, identifying both good and bad prac-
tice, is presented. Section 3 describes, and shows the use of, the
proposed protocols. Finally, Sections 4 and 5 provide a discussion
and conclusion.
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2. Related approaches

2.1. Workflows to quantify the subcellular distribution of receptor

Confocal microscopy data can be acquired in either two, or
three, spatial dimensions. In a 3D approach multiple axial slices
are acquired at different focal planes through the sample. A 3D
approach is inherently superior to 2D acquisition as the entire cel-
lular volume can be sampled [5]. In a 2D approach only a single
plane through the cell is acquired, hence key information can be
missed [13]. If the axial position is not set automatically, for exam-
ple at a set distance from the coverslip, or at the widest nuclear
plane, then user bias is introduced to the acquisition [20]. Note that
for live samples light exposure should be kept low. Therefore for
time-lapse imaging there is a practical trade-off between the num-
ber of axial slices, and the frame-rate.

Post-acquisition, data can be processed to isolate biologically
relevant regions of interest (ROIs) such as the plasma membrane.
Subsequently, the fluorescence intensity of a specific marker can
be quantified within each ROI. Selection of ROIs can either be man-
ual or automated. Manual selection should be avoided as it is prone
to user bias and error, and time-consuming and difficult to imple-
ment in 3D. With time-lapse data the change in (normalised)
intensity, within each ROI, over time can be calculated. For exam-
ple Fortian and Sorkin (2014) acquired 3D time-lapse data with
spinning disk confocal microscopy, and used an automated 3D
edge based segmentation protocol to identify the cellular ROI [5].
The segmentation was eroded by a set number of pixels to identify
ROIs for the intra-cellular region and plasma membrane. This was
used to calculate the normalised percentage, of both EGF and Grb2,
associated with the plasma membrane over time. This is an excel-
lent example of an automated 3D strategy for the quantification of
temporal changes to the subcellular distribution of a fluorescent
construct. However, the pre-processing and segmentation proto-
cols are not fully defined, only the software package and associated
components are cited. As the specific image processing algorithms
are not referenced, reproduction of this methodology has not been
possible in an alternative software application.

ROI intensities, and colocalization measures, can be calculated
using either the raw or pre-processed data. Raw data refers to
the unprocessed data as acquired by the microscope. There is
extensive literature on both image denoising and deconvolution
[15,21,22]. These techniques respectively aim to remove corrup-
tion and out of focus contributions within image data. Although
these approaches can be inaccessible for biological researchers,
due to either lack of knowledge or user-friendly tools, working
with raw data cannot be considered best practice. However, the
use of unjustified or poorly specified methods is worse as results
cannot be reproduced. Following the initial pre-processing steps,
data can be further processed to enhance, or isolate, biologically
meaningful components. Note there is no generalised workflow
for image pre-processing and care should be taken to match the
approaches used to both the data and the biological context. For
example, Dunn et al. (2011) suggest that background subtraction,
as calculated with a median filter, is appropriate for the quantifica-
tion of signal within endosomes [14]. When the width of the filter
is at least twice as large as the endosomal structures a reliable esti-
mation of local background is produced.
2.2. Colocalization analysis

Colocalization analysis is typically used to determine if labelled
proteins colocalize, or cluster, to the same subcellular structures.
High quality analysis relies on high quality data, and particular
care must be taken to avoid detector saturation and cross-talk
between channels [23]. The spatial sensitivity of colocalization
analysis is limited by the resolution limit of the microscope, which
is determined by the point spread function (PSF) [24]. According to
the Nyquist criterion the pixel size, and the axial spacing, should be
less than approximately half this limit to accurately represent the
sample at this resolution [25]. However, sampling at this optimal
rate may be practically infeasible for live experiments, or large
scale screens. When using larger pixels, or axial spacing, artefacts
can be introduced and it is the pixel size, not the resolution of
the microscope, which limits the spatial sensitivity of the colocal-
ization analysis. For example, consider the imaging of endosomes
using a pixel size of 0.25 lm, and axial spacing of 0.5 lm. When
using standard imaging wavelengths, and an objective with a
numerical aperture of 1.4, this is larger than the size defined by
the Nyquist criterion. Two endosomes, can only be distinguished
if they are separated by more than approximately 0.5 lm laterally,
or 1 lm axially. Therefore colocalization analysis, even using
super-resolution techniques, is poorly suited to the identification
of direct protein-protein interaction [26]. Techniques such as
Förster Resonance Energy Transfer (FRET) are more appropriate
for this purpose [27]. Conversely, when there is no direct interac-
tion between the proteins but association within subcellular struc-
tures, such as endosomes, FRET cannot be used.

In studies of receptor trafficking, quantitative analysis is often
neglected, and colour merges are used to provide qualitative evi-
dence for colocalization [6,28–30]. This can leave interpretation
and presentation of results open to user bias, either through the
image display settings, or the choice of representative images. Visu-
alisation of correlation is better performed using joint-histograms,
not colour merges [14]. There are two distinct strategies for colo-
calization analysis. The first is based on the overlap, or correlation,
between pixels [14,23,25]. The second detects objects within the
data and uses the centre of mass for each object to determine clus-
tering statistics such as Ripley’s K-function [25,26,31]. Object
based methods have shown promising results for localization and
TIRF microscopy, where the data is well modelled by point, or spot
like, objects [26]. However, for the application of receptor traffick-
ing using confocal microscopy, the receptor is typically localised to
either the plasma membrane or endosomal structures, the former
of which is not well represented by a point distribution. Therefore
we will focus on pixel based measures which can be split into two
categories; co-occurrence and correlation [32]. Co-occurrence
measures quantify how often, or howmuch, signal from each chan-
nel overlaps with the other channel based only on the presence, or
absence, of signal. For example, 50% of channel 1 signal overlaps
with channel 2 signal. Correlation measures assess the extent of
a relationship between the signals from each fluorophore. For
example, if there is high positive linear correlation a pixel with
high intensity in channel 1 would typically also have high intensity
in channel 2. For high negative linear correlation a pixel with high
intensity in channel 1 would typically have low intensity in chan-
nel 2.

The Manders Coefficients (MCs) (M1 and M2) are well-
established co-occurrence measures which simply calculate the
percentage of total signal from one channel which overlaps with
signal from the other, such that [33],

M1 ¼
X
i

C1i;coloc

C1i
M2 ¼

X
i

C2i;coloc

C2i
ð2:2:1Þ

where C1i and C2i represent the intensities of individual pixels
for channels 1 and 2 respectively. C1i,coloc and C2i,coloc represent
the colocalizing pixels such that C1i,coloc = C1i when C2i > 0 and
C1i,coloc = 0 otherwise. Similarly C2i,coloc = C2i when C1i > 0 and
C2i,coloc = 0 otherwise. The Pearson coefficient (PC), R is a well-
established measure of linear correlation, defined such that [34],



1 Matlab code available at https://github.com/JeremyPike/receptor-trafficking-
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where C1av and C2av are the average intensities for channel 1 and
channel 2 signal respectively. In this work we have avoided the
use of combined correlation and co-occurrence measures such as
the Manders overlap coefficient (distinct from the MCs), and the
more recent measure introduced by Singan et al. (2011), as it is
advantageous to maintain the ability to distinguish between co-
occurrence and correlation [33,35]. The Manders overlap coefficient
is also sensitive to small variations in background signal and detec-
tor offset [32]. A promising new colocalization measure was intro-
duced by Humpert et al. (2015) which is robust at both low signal
to noise ratios (SNR) and varying background levels [36]. It can also
be used to simultaneously analyse more than two fluorescent chan-
nels. However the interpretation of this measure is not yet clear.

To calculate the MCs it is necessary to isolate the pixels contain-
ing biologically relevant signal from both channels. Although signal
isolation is not an essential step for the calculation of the PC, Adler
et al. (2010) argue that, to prevent artificial inflation, only the pix-
els containing isolated signal from both channels should be used to
calculate the PC [32]. When calculated using only pixels containing
isolated signal from both fluorophores, the PC is easily interpreted
as a measure of linear correlation within pixels containing probes
from both channels [14,26]. This will often have a clear biological
interpretation, for example the correlation in endosomes positive
for both rab5 and EGFR. Therefore, if both the PC and the MCs
are calculated, the level of overlap between the two channels,
and the correlation within that overlap can be simultaneously
assessed. If all pixels in the ROI, for example a cell, are used to cal-
culate the PC then the extent of linear correlation between the two
signals across the whole cell is evaluated. In this case we consider
the biological interpretation to be less clear. Signal isolation should
be performed with an automated approach to avoid user bias and
error. In the popular approach introduced by Costes et al. (2004) a
linear fit is found for the joint histogram of the data [37]. The point
on this line of best fit below which there is no correlation (R 6 0) is
used to define the threshold values for both channels. A critical dis-
cussion of this approach is presented in Section 4.2.

Colocalization analysis is typically performed to test one of two
hypotheses; that the level of colocalization is higher than that pre-
dicted for randomly distributed signal (within a ROI), or that there
is a difference in the level of colocalization between test condi-
tions. In the former case each ROI can be considered indepen-
dently, but care must be made to avoid auto-correlation effects
(see [26] for a recent review). However, for most biological studies
it is more informative to consider if the distribution of measure-
ments taken across biologically independent replicates is signifi-
cant. To do this McDonald and Dunn (2013) showed, using
simulated data, that a distribution of PC measurements can be
compared to the expected value of R = 0 using a t-test. Similarly,
a distribution of either M1, or M2, measurements can be compared
to the fractional volume of the ROI occupied by either channel 2, or
channel 1, respectively [38]. The difference between the MCs and
the expected value can be expressed as,

M1diff ¼ M1� V2

VROI
M2diff ¼ M2� V1

VROI
ð2:1:1Þ

where VROI is the total volume of the ROI and V1, V2 are the volumes
of the isolated signal from channel 1 and channel 2 respectively.
Note that an accurate segmentation of the ROI containing the signal
from both channels is essential for this approach. For the applica-
tion of receptor trafficking, the ROI should contain the cytoplasm
and plasma membrane, but not intracellular structures such as
the nucleus. Moreover it is not clear if an expected value of R = 0
is suitable for real data where auto-correlation, or imperfect ROI
selection, can lead to inflation of the PC. McDonald and Dunn also
showed that a two way t-test can be used to test the null-
hypothesis that two distributions of either the PC or the MCs, have
the same mean. This approach is robust, and also easy to imple-
ment, as the effects of ROI selection, signal isolation and auto-
correlation will be reproduced for both conditions. Therefore, when
possible, we consider it highly desirable to design experiments with
a negative control and to test for changes in the level of
colocalization.
3. Methods and results

In this section the proposed analysis workflows, designed
specifically for live cell 3D time-lapse datasets, are presented
(Fig. 1). The use of these workflows is demonstrated on confocal
microscopy data of cells expressing both EGFR-EGFP, and
rab5-mRFP constructs. The cells were treated with either
AG1478, Dynasore or a DMSO control. The cell culture and micro-
scopy methodology is described in Appendix A. Unless otherwise
stated, the algorithms were implemented in 3D using Matlab
(v2015a, The Math-Works, Inc., Natick, MA, USA).1
3.1. Data pre-processing and cellular segmentation

Image pre-processing and segmentation are essential compo-
nents of the analysis. The first step is the manual cropping of each
time-series such that the cropped data contains a single cell. This
quality control measure was the only manual component of the
workflow. This was done blindly and efficiently using a custom-
designed interface, where the only criterion for selection is that
the cell be alive and non-mitotic. A maximal projection of the first
time-point is used to define a region for the cropping of the entire
time-lapse.

Each cropped time-lapse was then denoised using an ImageJ
plugin implementing the PURE-LET scheme described by Luisier
et al. (2010) [39]. ImageJ was run within a Matlab script using
MIJ and the plugin was set to automatically estimate noise param-
eters (4 spin cycles, 3 multi-frame) [40,41]. The PURE-LET scheme
is designed for the removal of Poisson noise, it is simple to use, rel-
atively fast, and has been shown to have similar performance to
other state of the art methods. Noise with a Poisson distribution
is produced in the imaging process by the inherent uncertainty
in arrival time of photons at the detector [42]. Briefly, the PURE-
LET scheme estimates and minimises the error between the
unknown noiseless image and the processed image based on an
assumption of Poisson noise.

To identify the cellular volume (segmentation), the denoised
EGFR-EGFP channel was processed using a 3D level set segmenta-
tion protocol. Specifically, we used a 3D implementation of the
edge based distance regularized level set evolution (DRLSE) frame-
work described by Li et al. (2010) (parameters listed in Table A.2)
[43,44]. This powerful approach facilitated the segmentation of the
cellular boundary using only the EGFR-EGFP signal, where conven-
tional thresholding approaches would fail. The DRLSE term allows
for a simple finite difference implementation without the need for
re-initialising sub-routines. The computational costs of a level set
framework are high so it is advantageous to implement a fast pro-
tocol to obtain an initial estimate of the segmentation, and to use
this estimate as the starting point for the level set algorithm. To
do this an algorithm based on K-means clustering was used
(described in Appendix A, example shown in Fig. 2B). After both
to
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Fig. 1. Flowchart summary of image analysis workflows. The first step is data denoising which is performed to reduce the corruption introduced during image acquisition.
This is followed by automated segmentation of the cellular boundary using the membrane bound receptor signal. This is done to produce an accurate region of interest (ROI)
for the subsequent analysis protocols. Background subtraction is followed by automated thresholding to isolate signal in both channels. At this point, bulk colocalization
statistics can be calculated for each cell, or the cellular ROI can be split into banded volumes using a distance transform. The percentage of receptor (without thresholding), or
colocalization measures, can then be calculated for each band. Together these statistics and measures provide a thorough description of the subcellular receptor distribution
and colocalization with endosome sub-populations.
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the initial and level set based segmentation the largest connected
component was selected, and any holes were filled.

Ligand treatment triggers receptor internalisation and a
decrease in the SNR for the EGFR-EGFP channel at the plasma
membrane. Therefore this is a complex segmentation problem.
Validation of the segmentation protocol was performed using a ref-
erence produced by blind manual segmentation of EGFR-EGFP and
transmission images. The SNR at the plasma membrane was suffi-
cient at all time-points to perform manual validation, although a
separate membrane stain could have been used if this was not
the case. A key limitation of this approach is that manual segmen-
tation will contain bias and not be perfect, but is currently a widely
accepted approach to segmentation validation. The Jaccard similar-
ity index, J, was used as a performance measure [45]. The Jaccard
index is defined as the intersection divided by the union of the
manual segmentation,M, and the automated segmentation, A, such
that a perfect match would give J = 1;

JðM;AÞ ¼ jM \ Aj
jM [ Aj ð3:1:1Þ

The results of this comparison are shown in Fig. 2D. Impor-
tantly, a high mean performance (J = 0.87) and a statistically signif-
icant improvement from the level set method over the K-means
based estimate was demonstrated.

The final pre-processing step was background subtraction with
a 3D rolling ball approach [46]. In this approach, a background vol-
ume was obtained by morphological opening (erosion followed by
dilation) of the denoised data using a spherical structure element
(1 lm radius). This background was then subtracted from the
denoised data to produce background subtracted data. When per-
forming rolling ball background subtraction it is important to set
the radius to be at least as large as the width of the largest biolog-
ically relevant structures, in this case, endosomes. Note, for the
denoising, segmentation and background subtraction steps, each
3D time-point, and each channel, were processed independently.
3.2. Quantifying subcellular receptor distribution over time

In this subsection, a protocol for quantifying the subcellular
distribution of receptor over time is presented. The data was first
pre-processed, and the cellular ROI was segmented, as described
in the previous subsection. Subsequently, the cellular ROI (for each
time-point) was split into banded volumes of equal width
(0.5 lm), based on Euclidean distance from the segmentation edge
(Fig. 2E). This was done using the computationally fast 3D distance
transform described by Mishchenko (2015) [47]. Importantly, the
transform calibrates for differences in the lateral and axial spacing.

The percentage of the total receptor signal (after pre-
processing) contained within each band was calculated to charac-
terise the subcellular distribution at each time-point (Fig. 2F).
These measurements were then volume corrected by subtracting
the fractional volume of the band. This was done to calibrate for
differences in cell size and shape resulting in bands of varying vol-
ume (Section 4.1). Note, bands further than 5 lm from the segmen-
tation edge are not shown as only larger cells will exceed this
depth. When analysing time-lapse data the change in receptor dis-
tribution, for each cell, can be calculated by subtracting the mea-
surements from the first time-point. This is advantageous and
justified as it isolates the ligand induced change in receptor distri-
bution, and corrects for cellular variation in the receptor distribu-
tion before ligand treatment.

The plots in Fig. 3A show the mean change in percentage EGFR
as a function of distance from the segmentation edge across all
time-points and conditions. These plots are useful for identifying
condition-dependent changes to (ligand induced) receptor traffick-
ing. Fig. 3B shows the initial distribution of receptor at the start of
the time-lapse. This can be used to check for any condition depen-
dent variation of receptor distribution before the ligand induced
trafficking response. It is informative to perform a statistical anal-
ysis to determine if the effects of a specific treatment are signifi-
cant, relative to the control population. However, when
considering distributions of single cell measurements the assump-
tion of a normal distribution is unlikely to be valid, and there will
be outliers. Non-parametric tests equivalent to the two-way
ANOVA are not well established, so for simplicity we restricted
the statistical testing to the change between the first and final
time-points (Fig. 3C). For each cell, the mean (absolute) percentage
EGFR change across all bands (up to 5 lm) was calculated. This
characterises the total change in subcellular receptor distribution
30 min post ligand treatment. Using this measure, a non-
parametric Kruskal-Wallis analysis of variance was performed. If
significant (p < 0.05), post hoc-testing using a Mann-Whitney U
test, with Bonferroni correction for multiple hypothesis testing
(n = 2), was performed for each treatment relative to the control.
With this approach, a statistically significant reduction in the mag-
nitude of the trafficking response, for both the AG1478 and Dyna-
sore treatments, was identified.
3.3. Signal isolation for colocalization analysis

In the previous subsection, the EGFR-EGFP signal was used to
characterise changes in the subcellular distribution of receptor.
In this section, we suggest and validate a strategy for thresholding
both the EGFR and rab5 channels. It is necessary to threshold the
data to calculate the Manders coefficients and good practice for
the Pearson coefficient (Section 2.2) [32]. After data denoising
and background subtraction, as described in Section 3.1, an auto-
mated global thresholding approach is typically sufficient. Specifi-
cally, we used the Otsu approach where it is assumed that the data
histogram is bi-modal, consisting of background and signal peaks
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Fig. 2. Pre-processing, cellular segmentation and band based analysis of 3D time-lapse data. (A) Representative raw EGFR-EGFP image slice from a 3D stack. Scale bar set at
5 lm and contrast enhanced such that the display range is between zero and half the maximum pixel intensity. (B) Pre-processed data after denoising and background
subtraction. The results from the K-means based (red) and level set (green) segmentation protocols are shown. (C) Surface rendering of the level set segmentation result for a
single time-point. (D) The segmentation performance of both the K-means estimation and level set algorithm (3D DRLSE) was quantified using the Jaccard index. This was
done using 10 datasets where 14 evenly spaced slices per time-point were manually segmented. The mean Jaccard index for the K-means and level set protocols were 0.82
and 0.87 respectively. A sign test was used to determine that the level set protocol produced a significant increase in performance (p = 0.002). Central mark on boxplot
represents the median, and the edges of the box are the 25th and 75th percentiles. (E) The cellular ROI is split into banded volumes based on distance from the segmentation
boundary. Each band has a width of 0.5 lm. (F) Uncorrected plot shows percentage of total cellular EGFR signal contained within each band. For the volume corrected plot, the
fractional volume of each band has been subtracted. This was calculated using data from the control population for the first time-point (immediately after EGF treatment).
Error bars given by the SEM (n = 12). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Band based spatio-temporal analysis of subcellular receptor distribution. (A) Plots of the volume corrected change in percentage EGFR signal over time, for each
banded volume (up to 5 lm), in response to EGF treatment. The data for the DMSO control and the two drug treatments are shown (AG1478 and Dynasore). Error bars given
by the SEM and n > 10 for all treatments. (B) Plot showing the volume corrected subcellular distribution of EGFR for the first time-point. (C) Plot of mean (absolute) change in
percentage EGFR signal (volume corrected) between the first and final time-points (30 min). A Kruskal-Wallis one-way analysis of variance returned p = 0.005, indicating that
there are statistically significant differences between treatments. Post-hoc testing of both drug treatments relative to the control by the Mann-Whitney U test (corrected by
the Bonferroni method), returned p = 0.007, p = 0.03 for the AG1478 and Dynasore treatments respectively. The central band represents the mean, and the error bars are the
standard deviation.
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[48]. The threshold value is defined such that the intra-class vari-
ance between the two peaks is minimised. This value best sepa-
rates the signal and background components of the data. Only
pixels contained within the cellular ROIs were included in calcula-
tions, and by combining the data from all time-points, a single
threshold value was found for each cell.

To validate this approach on real data, threshold values were
manually set for 15 cells at a single time-point. This was done



Fig. 4. Comparison of the Otsu and Costes thresholding approaches for signal
isolation using real data. Before calculating the threshold values, denoising and
background subtraction was performed. Both methods were compared to manually
set threshold levels from 15 randomly selected cells and time-points. This was done
by calculating the Jaccard index, J, using the resulting binary images. For the EGFR-
EGFP channel, the mean performance was J = 0.66 and J = 0.63, for the Otsu and
Costes methods respectively. A sign test returned p = 0.6 indicating that no
significant difference in performance was detected. For the rab5-mRFP channel,
the mean performance was J = 0.71 and J = 0.22 for the Otsu and Costes methods
respectively. A sign test returned p = 9.8 � 10�4 indicating that the Otsu method
performed significantly better than the Costes approach.

2 available at http://uk.mathworks.com/matlabcentral/fileexchange/22940-vol3d-
v2, accessed 26/06/16
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blindly, using a script which randomly selected cells, and
time-points, from the entire data-set. Manual thresholds were
subsequently set using Fiji [49]. The threshold values were chosen
to isolate both the membrane and endosomal associated signal.
The resulting binary data was compared to that generated by
automated Otsu thresholding using the Jaccard index (Eq.
(3.1.1)). The approach proposed by Costes et al. (2004) was also
tested (Section 2.2) [37]. Both approaches demonstrated a compa-
rable mean performance for the EGFR channel, but the perfor-
mance of the Otsu approach was significantly higher for the rab5
channel (Fig. 4).

A comparison of the Otsu and Costes methods was also per-
formed on synthetic data. 3D two channel image stacks of spots
(with Gaussian profile to approximate point spread function) were
generated in the open image analysis platform, Icy, using a mixed
Poisson-Gaussian noise model (Fig. 5A) (detailed in Appendix A)
[50,51]. Synthetic data was generated for low, medium and high
levels of noise. The level of colocalization was varied from 100%
colocalized (spot overlap) to 100% anti-colocalized (spot avoid-
ance). Spots not specified as colocalized (or anti-colocalized) were
distributed randomly. 3D Gaussian filtering (width = 1 pixel) was
used as a simple pre-processing step. Threshold values were then
calculated using either a Costes or Otsu approach on both the
raw and pre-processed data. The MCs (M1 andM2) were calculated
before subtracting the expected value to obtain M1diff and M2diff

(Eq. (2.1.1)). Fig. 5B shows the rate of failure for the Costes
approach in the low noise test data. Failure is defined as extreme
over segmentation resulting in 100% signal overlap and a MC equal
to one. The Costes approach has non-zero fail rate when there is
either no colocalization, or anti-colocalization, indicating that it
is not appropriate under these conditions. The Otsu approach does
not fail for any tested condition. Fig. 5C showsM1diff for all levels of
colocalization and noise.M1diff is shown only where the failure rate
is zero. In all cases, pre-processing increases the performance. Otsu
thresholding (with pre-processing) outperforms the Costes
approach across all noise levels. The implications of this analysis
are discussed in more detail in Section 4.2.

3.4. Quantitative colocalization analysis for 3D time-lapse data

Section 3.1 describes the cellular segmentation and pre-
processing steps of the proposed workflows. Section 3.3 introduces
a strategy for signal isolation. Using only the isolated and pre-
processed signal, the Manders (M1 and M2) and Pearson (R) coef-
ficients were calculated for all time-points. To assess the ligand
induced change in colocalization over time, the change in all coef-
ficients was calculated, for each cell, by subtracting the measure-
ment from the first time-point. Fig. 6A–C show plots for each of
the coefficients across all time-points, and for all conditions.

To identify statistically significant differences in the colocaliza-
tion response for a specific condition relative to the control, the
colocalization coefficients were processed as conventional mea-
surement variables. As in Section 3.2 we restrict our statistical
analysis to the change between the first and final time-points. This
characterises the change in either co-occurrence, or correlation, for
the Manders and Pearson coefficients. A Kruskal-Wallis analysis of
variance with post hoc testing of each treatment relative to the
control (Mann-Whitney U test with Bonferroni correction) was
then used to identify statistically significant changes in the colocal-
ization response. Fig. 6D– F show the results of this analysis for the
Manders and Pearson coefficients. A statistically significant
decrease in the level of EGF induced co-occurrence, as measured
by the Manders coefficients, was shown for both the AG1478,
and Dynasore treatments. No significant change in correlation, as
measured by the Pearson coefficient, was established for either
treatment.
3.5. Visualising co-occurrence in 3D

In this subsection an unbiased strategy for the visualisation of
colocalization is presented. The proposed method produces a spa-
tial map of co-occurrence. For a specific cell and time-point, the
relative contribution of each pixel to one of the Manders coeffi-
cients (either M1 or M2) is used to determine the intensity of the
co-occurrence map. For M1 this is the isolated signal from channel
1, which overlaps with isolated signal in channel 2. This 3D map is
then scaled between the maximum and minimum display values,
and normalised by multiplying by M1 (or M2) for the given
time-point. This normalisation allows for unbiased visual compar-
ison between multiple cells.

The co-occurrence maps (and cellular ROIs) can be visualised
interactively in 3D (Fig. 7A). To do this, the Matlab vol3d v2 script2

was used, but any software capable of 3D data rendering could be
used for this purpose. If 2D visualisation is required then either
the maximal projection, or single slices, of the map can be shown.
In Fig. 7B, maximal projections of M1 co-occurrence maps are shown
using a false colour lookup table (LUT) for representative cells from
the control, AG1478 and Dynasore treatments (20 min post EGF
treatment). Finally, recall that it is informative to include joint-
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Fig. 5. Comparison of the Otsu and Costes thresholding approaches for signal isolation using synthetic data. (A) 3D test data of spots was generated for varying levels of
colocalization (and anti-colocalization), and for three levels of noise. 50 stacks were generated per condition. A single slice from the medium noise level is shown. (B) In some
instances the Costes approach fails to find appropriate threshold values resulting in Manders coefficients equal to one. The percentage of stacks for which the Costes approach
fails is shown for each level of colocalization (low noise). (C) M1diff is calculated by subtracting the expected value from the Manders Coefficient M1. This is shown for all
methods, levels of colocalization and noise levels. Note M1diff is shown only when the failure rate is zero.

Fig. 6. Quantifying colocalization with 3D time-lapse data. (A–C) Plots of change in either the Manders (M1 and M2), or Pearson coefficients. Measurements for a DMSO
control, AG1478 and Dynasore treatments are shown. These plots characterise the change in co-occurrence (Manders) or correlation (Pearson) between EGFR-EGFP and rab5-
mRFP, in response to EGF treatment. Error bars are given by the SEM and n > 10 for all treatments. (D, E) Plots of the change between the first and final time-points for the
Manders and Pearson coefficients. Central band represents the mean, and the error bars are the standard deviation. A Kruskal-Wallis one-way analysis of variance returned,
p = 4 � 10�5, p = 0.002, p = 0.08 for M1, M2 and the Pearson coefficient respectively. This indicates that there are statistically significant differences between treatments for
both M1 and M2. (D) For M1 post-hoc testing of both drug treatments, relative to the control, by the Mann-Whitney U test (corrected by the Bonferroni method) returned
p = 0.008, p = 6 � 10�4 for the AG1478 and Dynasore treatments respectively. (E) For M2 Post-hoc testing returned p = 0.02, p = 0.007 for the AG1478 and Dynasore
treatments respectively. (F) For the Pearson coefficient the analysis of variance was not significant so no post-hoc testing was performed.
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histograms as a visualisation of correlation [14]. Fig. 7 C shows the
corresponding joint-histograms where only pixels within the cellular
ROI have been included.
3.6. Quantifying subcellular colocalization distribution over time

In Section 3.2 a method was proposed which split the cellular
segmentation into banded regions using a 3D distance transform.
In Sections 3.2–3.5 workflows for quantifying and visualising colo-
calization were presented. Here these two strategies are merged to
quantify the subcellular distribution of colocalization. We propose
two approaches. In the first we consider the signal contained
within each band individually and calculate both the Manders
coefficients and the Pearson coefficient. This quantifies the level
of co-occurrence and correlation for each band. In this approach,
if we compare the measurements from two different bands, we
cannot say if there is more, or less, co-occurring signal, only that
a greater or smaller percentage of that band’s signal is co-
occurring. In the second approach, the percentage of signal from
the co-occurrence map (Section 3.5) contained within each band
is calculated and volume corrected. This approach follows the same
protocol as that described for the EGFR signal in Section 3.2 and
quantifies where the co-occurring signal is located. When compar-
ing two bands we can say that there is more co-occurrence in one
band but we cannot state what percentage of the band’s signal is
co-occurring, or comment on correlation.

The results from the first approach are shown in Fig. 8. Fig. 8A
shows the change in M1 with respect to the first time-point across
all banded regions up to 5 lm from the cellular segmentation. This
characterises the ligand induced changes in co-occurrence on a
subcellular level. Note, in the control population, the dominant
increase in co-occurrence occurs less than 3 lm from the edge.
This is as expected since we are quantifying colocalization between
receptor and early endosomes. Fig. 8B shows the same analysis for
the change in the Pearson coefficient. Fig. 8C and D show M1 and
the Pearson coefficient at the first time-point. Fig. 9 shows the
results from the second approach. Note from Fig. 9A that there is
no clear change in how the co-occurring signal is distributed in
response to ligand. Fig. 9B shows the distribution of the co-
occurrence map at the first time-point. Fig. 9C shows the mean
(absolute) change in percentage signal between the first and final
time-point across all bands up to 5 lm. No statistically significant
change was found.
4. Discussion

4.1. Band based analysis of subcellular receptor distribution

In the band-based approach introduced in Section 3.2, the cellu-
lar ROI is split into volumetric regions based on distance from the
segmentation edge. The relative distribution of receptor signal
across the banded volumes can then be calculated. This approach
facilitates the quantification of both the surface (membrane associ-
ated) and intracellular signal. Importantly, the analysis is auto-
mated and performed in 3D, hence avoiding any user bias. The
level set based cellular segmentation protocol has high perfor-
mance when using the receptor signal as the input (Fig. 2D). This
is advantageous for live cell microscopy as the use of a secondary
marker for the plasma membrane, or cytoplasm, would increase
sample exposure and experimental complexity. This increase in
light exposure, and associated photo-toxicity, would reduce the
sampling and/or frame-rate achievable.

The measurement for each band was volume corrected by sub-
tracting the expected value assuming a homogenous distribution
of signal, specifically the fractional volume of each band. This is
justified because cells have varying size and shape which in turn,
change over time. By subtracting the expected value, we calibrate
for varying band volume which facilitates direct comparison
between cells over time. The bands were chosen to be of equal
width (0.5 lm) for ease of interpretation. In this approach the
number of bands per cell will vary and therefore we chose to
restrict plots to a maximum of 5 lm from the segmentation edge.
An alternative approach would be to fix the number of bands but
vary the band width between cells. This would allow for quantita-
tive comparison of the entire cellular volume, but the interpreta-
tion would be less clear.

In the presented workflows, the nucleus is not excluded from
the analysis ROI. Due to cellular size and shape variation, the pro-
portion of nuclear region contained in a specific band will vary.
Since the nuclear region contains less receptor, and no endosomes,
this will introduce noise to bands in the cellular interior. Therefore
using a nuclear stain to segment the nucleus would be advanta-
geous. However, as with the addition of a membrane stain, the
use and imaging of a nuclear marker would require additional light
exposure. If a nuclear stain is used, the band based analysis could
be repeated within the nuclear region, or alternatively extending
outwards from the nucleus to the plasma membrane. Although this
is not particularly relevant for the EGFR and rab5 data presented,
this is an excellent example of how the proposed workflows could
be adapted for a variety of applications.

When using live-cell time-lapse data, the change in a given
measurement can be isolated at a single cell level, by subtracting
the measurement value at the first time-point. This is advanta-
geous as it corrects for cellular variation in the receptor distribu-
tion prior to ligand stimulation. Therefore the ligand induced
change in receptor distribution is isolated (Fig. 3A). This approach
can also be applied to colocalization measurements as shown in
Figs. 6A, 8A, B and 9A.

The mean absolute change in percentage signal (between the
first and last time-points) across all bands provides a single mea-
surement per cell. This quantifies the magnitude of the, ligand
induced, trafficking response (Fig. 3C). This summary measure-
ment is useful as non-parametric hypothesis testing can be
employed to identify statistically significant changes to the traf-
ficking response between two conditions (typically a control and
treatment) (Fig. 3C). However, information is lost by the reduction
of the analysis to a single measurement per cell.

In summary, the proposed band-based analysis provides
researchers with a powerful tool to identify, and quantify, pertur-
bations to receptor trafficking in live cells. Moreover this approach
to quantifying the subcellular distribution of a fluorophore is
adaptable and could be applied to applications outside this field.

4.2. A critical review of Costes thresholding

Costes thresholding is an automated strategy for signal isolation
in colocalization analysis (Section 2.2) [37]. Briefly, the linear line
of best fit for the joint-histogram of the data is found, and the point
on this line below which the data has a Pearson coefficient of less
than zero is used to define global threshold values. This strategy is
cited in review articles as good practice [14,25], and implemented
in many popular image processing applications including Fiji and
Imaris (Bitplane AG, Zurich, Switzerland) [49]. Adler and Parmryd
(2013) note that a Costes approach will fail if there is no correlation
in the data, and Dunn et al. (2011) suggest the approach may fail if
the SNR is too low, the labelling density is too high, or if there are
too many structures in one channel [14,23]. We also note that with
a Costes approach there is an assumption that the data is well rep-
resented by a single linear fit, and therefore has strong correlation.
In Fig. 5 B we show that a Costes approach has non-zero fail rate
when tested on simulated data when there is either no colocaliza-



Fig. 7. Unbiased visualisation of colocalization. (A) Snapshot of a M1 based map of co-occurrence which has been visualised by 3D rendering. The surface of the cellular ROI is
shown in green. (B) Maximal projections of representative cells (20 min post EGF treatment) for the control, AG1478 and Dynasore treatments respectively. Raw unprocessed
data for the EGFR-EGFP and rab5-mRFP channels are shown in the first two rows respectively. The third row shows the normalised M1 based map of co-occurrence. Each map
has been scaled by the corresponding M1 calculation to facilitate visual comparison. Scale bar set at 5 lm. (C) Joint-histograms for the corresponding cells and time-point
(logarithmic scale used). Only pixels within the cellular ROI were included. The line of best fit is shown in white. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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tion, or anti-colocalization. This analysis was performed on a very
simple test data set, where the intensities of spots in both channels
were non-varying and equal (Appendix A). The Costes approach
fails under these conditions as the gradient of the line of best fit
can by less than or equal to zero. Therefore we conclude that a
Costes approach is appropriate only if it can be assumed before
the study that well correlated colocalization is present. Since the
Costes approach is used to calculate measures of colocalization this
should clearly not be assumed in the majority of cases.

Consider the specific case of receptor colocalization with endo-
somal sub-populations. In such a case there are three key struc-
tures; membrane bound receptor, receptor positive endosomes
and receptor negative endosomes. Each of the structures will have
very different levels of correlation. Therefore the joint histogram
representation will not be well represented by a single linear fit,
and a Costes approach is not applicable (Fig. 10). Moreover it
should not be assumed that there will be correlation between
receptor and early endosomes in the drug treated populations or
for all time-points. Note from Fig. 4 that the Costes approach fails
to reliably isolate signal in the rab5 channel, when compared to
manually set threshold values.

We consider well defined pre-processing of data, followed by
global thresholding strategies, such as Otsu or minimum cross
entropy thresholding, to be a more appropriate strategy for signal
isolation in colocalization studies [48,52]. Fig. 4 demonstrates that
Otsu thresholding outperforms Costes thresholding on the real
dataset. For the simulated data, Fig. 5C demonstrates that when
calculated on data pre-processed with a Gaussian filter, the Otsu
approach outperforms the Costes approach for all tested levels of
colocalization and noise parameters. The Otsu approach performs
substantially better at higher noise levels when performed on
pre-processed data. This emphasises the importance of the pre-
processing steps. Finally note, we are not proposing that the Otsu
method will be appropriate for all applications and datasets. Our
conclusion is that custom design and testing of pre-processing
and thresholding steps is necessary to reliably segment biologically
relevant signal for colocalization analysis. Importantly the devel-
oped strategy should be automated and applied consistently to
all conditions to avoid user bias and variability.

4.3. Quantitative colocalization analysis

In Section 3.3, a workflow was presented to quantify colocaliza-
tion for 3D time-lapse data. Both the Manders (M1 and M2) and
Pearson coefficients are calculated (Fig. 4A–C). Note the Pearson
coefficient is calculated only across pixels containing isolated sig-



Fig. 8. Band based analysis using colocalization measures. (A) Plot of the change in the first Manders coefficient, M1, over time, for each banded volume (up to 5 lm), in
response to EGF treatment. The data for the DMSO control and the two drug treatments are shown (AG1478 and Dynasore). Error bars given by the SEM and n > 10 for all
treatments. (B) Plot of the charge in the first Pearson coefficient, R, over time, for each banded volume, in response to EGF treatment. (C, D) Plots of M1 and the Pearson
coefficient for each banded volume at the first time-point.
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nal in both channels. Recall this pairing of colocalization measures
is very informative, and has a clear interpretation; the Manders
coefficients quantify signal co-occurrence, and the Pearson coeffi-
cient quantifies the correlation within the co-occurring signal.
For the test data used in this study, M1 represents the percentage
of EGFR signal overlapping with rab5 positive endosomes, and is
therefore the more relevant of the two Manders coefficients.

Non-parametric statistical testing can identify statistically sig-
nificant differences in either co-occurrence, or correlation, between
conditions (Fig. 4D–F). In this approach the statistical analysis is
performed across multiple, as opposed to individual, ROIs which is
advantageous as population based conclusions are essential. We
consider the null hypothesis that the ligand induced change in co-
occurrence, or correlation, is the same in the control and treated
samples. The null hypothesis that the signal is randomly distributed
within the cellular ROI is not considered. There are two reasons for
this; firstly we consider rejecting the former null-hypothesis to be
more informative and useful for the study of receptor trafficking.
Secondly, the technical complications of auto-correlation and accu-
rate ROI detection must be considered to reject the latter null-
hypothesis. For example the nuclear region should be isolated and
removed from calculations. The proposed approach is therefore
robust, unbiased and comparatively simple to implement.

In Section 3.6 the band based analysis from Section 3.2 is used
to characterise the subcellular distribution of colocalization. Two
distinct approaches were taken. Firstly, the level of co-occurrence
and correlation was calculated for each band independently
(Fig. 8). Secondly, the distribution of total cellular co-occurrence
was characterised (Fig. 9). These analyses were included to demon-
strate how the workflows presented in this paper can be adapted
and combined for new applications. To clarify the difference
between these two approaches consider a simple example where
a cell is split into just two bands, with equal volume. The outer
band contains 90% of the signal from channel 1 which has 50%
overlap with channel 2 signal. The inner band only has 10% of
channel 1 signal but 100% overlap with channel 2 signal. The first
approach would return M1 = 0.5 and M1 = 1 for the outer and inner
bands respectively, but this could be misleading as 82% of the co-
occurring signal is contained in the outer band. This distribution
of co-occurring signal is calculated by the second approach.



Fig. 9. Band based spatio-temporal analysis of subcellular co-occurrence distribution. (A) Plots of the change in (volume corrected) percentage co-occurrence map signal over
time, for each banded volume (up to 5 lm), in response to EGF treatment. The data for the DMSO control and the two drug treatments are shown (AG1478 and Dynasore).
Error bars given by the SEM and n > 10 for all treatments. (B) Plot showing the (volume corrected) subcellular distribution of the co-occurrence map for the first time-point.
(C) Plot of mean (absolute) change in (volume corrected) percentage co-occurrence map between the first and final time-points (30 min). A Kruskal-Wallis one-way analysis
of variance returned p = 0.07, indicating that there are no statistically significant differences between treatments. Therefore no post-hoc testing was performed.

Fig. 10. Receptor and endosomal two channel data is not well represented by a single linear fit. Joint histograms (logarithmic scale) for a representative cell expressing EGFR-
EGFP and rab5-mRFP. Immediately prior to imaging the cell was treated with EGF. Only pixels within the cellular ROI were included in the plots. The line of best fit for each
plot is shown in white. Note the gradient of the linear fit changes over time as the receptor is internalised. Therefore, if a Costes thresholding approach is used the ratio
between the two threshold values will also change. Also note that for the first two time-points, where the majority of the receptor is membrane localised, the data is weakly
correlated. This is also the case if all time-points are combined to produce a single joint-histogram.
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4.4. Unbiased visualisation of colocalization

Colocalization is typically visualised using colour overlays (Sec-
tion 2.2). This approach is open to bias through the choice of dis-
play parameters and contrast. Joint-histograms provide an
effective visualisation of correlation, but do not preserve spatial
information. In Section 3.4 we introduced a spatial map for the
visualisation of co-occurrence. Importantly, this allows for unbi-
ased visualisation of the colocalizing signal, where the spatial
information is preserved. Using 3D rendering techniques, research-
ers can interactively view the co-occurrence in 3D (Fig. 5A). How-
ever 2D images are often required, and as an alternative to colour
overlays, a maximal projection (or single slice) of the co-
occurrence map can be used. The use of maximal projections can
be misleading. If there is more than one pixel with co-occurring
signal along the projection axis then only the maximal value will
be displayed. Therefore visualisation in 3D is preferable. Note that
these visualisation strategies should be performed in parallel with,
and not as an alternative to, quantitative analysis (Section 3.4).
Finally note that, as with all visualisation strategies, the choice of
the representative cell can bias the interpretation, emphasising
the importance of quantitative analysis of a population.
5. Conclusion

All of the workflows introduced in this study are unbiased and
described in sufficient detail as to be reproducible. These two key
requirements should always be fulfilled by an image analysis pro-
tocol. Custom image analysis solutions are typically required for
the analysis of subcellular signal distribution and colocalization.
Therefore the aim of this work was not to provide step by step pro-
tocols, which researchers should follow exactly. Instead, illustra-
tive examples were used to demonstrate the implementation of
custom workflows which should be adapted by researches for dif-
ferent datasets. The described protocols are specifically designed



Table A.1
Parameters for generation of simulated colocalization data using the Colocalization
Simulator plugin from the software application Icy. The colocalization percentage was
varied and three noise levels were generated (low/medium/high).

Parameter Value

Sequence width/height 256
Number of slices 50
Number of spots (for both channels) 100
Minimum spot intensity (for both channels) 20
Maximum spot intensity (for both channels) 20
Mean colocalization distance 0
Std colocalization distance 0
Maximum number of iterations 50
Poisson noise (low/medium/high) 0/2/4
Mean Gaussian noise (low/medium/high) 0/2/4
Std Gaussian noise 1

Table A.2
Parameters for the distance regularized level set evolution (DRLSE) segmentation
protocol. The full details of the protocol can be found in Li et al. (2010) [43]. A
stopping condition is employed such that the segmentation protocol is stopped if the
volume contained within the zero level set changes less than 0.01% between two
iterations. For the 3D extension the axial and spatial derivatives are scaled using the
pixel size and axial spacing.

Parameter Value

Edge term constant, k 8
Constant force term, a 0
DRLSE constant, l 0.15
Binary step size, c0 2
Update step, Dt 1
Dirac delta width, e 1.5
Stopping condition 0.01%
Maximum number of iterations 50
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for 3D live cell time-lapse data, and the statistical analysis is con-
structed to identify differences between treated and control sam-
ples. Such an approach is robust and ideal for confirmatory
studies from larger screens. For example, the workflows presented
in this work could be used to validate and further investigate hits
from a RNAi screen for regulators of endocytosis and trafficking
[53,54]. Finally, we note that the workflows could easily be
adapted for applications other than receptor trafficking.
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Appendix A. Supplementary materials and methods

A.1. Cell culture and transfection

The HeLa cell line was cultured in DMEM (with 4.5 g/l

L-glutamine) (Invitrogen) supplemented with 10% FBS (Biosera)
and 1% Penicillin-Streptomycin solution (Invitrogen) at 37 �C and
5% CO2. The EGFR-EGFP construct was a gift from Alexander Sorkin
(University of Pittsburgh, USA) and the rab5-mRFP construct was a
gift from Ari Helenius (Institute of Biochemistry, ETH Zurich). 24 h
prior to transfection, 2 � 106 cells/well were seeded into 35 mm
glass bottomed dishes (MaTek) with antibiotic free media. Tran-
sient dual transfection of both constructs was performed using
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
instructions (10 ll of Lipofectamine 2000 and 2 lg of both con-
structs were used per well). 3 h after the addition of the constructs
the media was changed (antibiotic free). Cells were imaged 24 h
after expression.

A.2. Drug treatment and confocal microscopy

Prior to imaging, cells were washed with 1 ml DPBS (Lonza) and
serum starved for 30 min in serum/antibiotic free media (37 �C and
5% CO2). Media was then replaced with 2.5 ml cell imaging media
(10 mM HEPES–Hank’s balanced salt solution (Sigma), pH 7.4) and
cells were treated with either 5 lg/ml AG1478 (Sigma) (1 ll/ml
DMSO:MeOH 1:1 vehicle), 80 lM Dynasore hydrate (Sellek Chem-
icals) (1 ll/ml DMSO vehicle) or 1 ll/ml DMSO (Sigma). Cells were
then incubated for a further 30 min before transfer to the micro-
scope where cells were treated with 2 ng/ml EGF (Bachem) imme-
diately prior to initiating the time-lapse. Confocal laser scanning
microscopy was performed with an inverted microscope (Eclipse
Ti, Nikon A1R) at 37 �C and 5% CO2 using a 1.49 NA 100X NA oil-
immersion objective. Note a water immersion lens, which closer
matches the refractive index of living cells, could be used to reduce
artefacts and spherical aberration. An argon-ion 457–514 nm laser
was used to excite the EGFR-EGFP construct and a green diode
561 nm laser was used for the rab5-mRFP construct. Images were
acquired, or the data was scaled down, such that the pixel size
was 0.25 lm. Z-stacks with 0.3 lm slice spacing were acquired
every 10 min for a total duration of 30 min. Each stack took
approximately 3 min to acquire.

A.3. K-means based segmentation estimate

To produce the segmentation estimate for the initialisation of
the level set function, the data from the EGFR-EGFP channel was
clustered using a K-means approach (4 clusters) [55]. The 3 clus-
ters with the highest means were combined and subsequently
dilated, filled and eroded with a spherical structural element (with
a 1.5 lm radius). Holes in each axial slice were filled separately.

A.4. Generation of synthetic data for colocalization analysis

To produce the simulated data with positive, or no, colocaliza-
tion the Colocalization Simulator plugin (version 0.0.1.2), from
the open image analysis package Icy, was used [50,51]. To generate
the anti-colocalized data the Colocalization Simulator plugin was
modified. First, the spots in both channel 1 and 2 were randomly
placed. If a spot from channel 2 was less than a set distance
(20 pixels) from a channel 1 spot, then it was randomly
re-positioned. This re-positioning was repeated until all anti-
colocalized spots from channel 2 were at least the minimum
distance from all spots in channel 1. Finally, the remaining spots
from channel 2 (neither colocalized or anti-colocalized) were ran-
domly distributed. The plugin parameters for both the colocalized
and anti-colocalized data were set as specified in Table A.1. 50
stacks were generated per colocalization percentage and noise
level.

References

[1] S. Jones, J.Z. Rappoport, Interdependent epidermal growth factor receptor
signalling and trafficking, Int. J. Biochem. 51 (2014) 23–28.

[2] A. Sorkin, M. von Zastrow, Endocytosis and signalling: intertwining molecular
networks, Nat. Rev. Mol. Cell Biol. 10 (2009) 609–622.

[3] R. Irannejad, N.G. Tsvetanova, B.T. Lobingier, M. von Zastrow, Effects of
endocytosis on receptor-mediated signaling, Curr. Opin. Cell Biol. 35 (2015)
137–143.

[4] R. Villaseñor, H. Nonaka, P. Del Conte-Zerial, Y. Kalaidzidis, M. Zerial,
Regulation of EGFR signal transduction by analogue-to-digital conversion in
endosomes, Elife 4 (2015) e06156.

http://findit.bham.ac.uk/
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0005
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0005
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0010
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0010
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0015
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0015
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0015
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0020
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0020
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0020


54 J.A. Pike et al. /Methods 115 (2017) 42–54
[5] A. Fortian, A. Sorkin, Live-cell fluorescence imaging reveals high stoichiometry
of Grb2 binding to the EGF receptor sustained during endocytosis, J. Cell Sci.
127 (2014) 432–444.

[6] D. Teis, N. Taub, R. Kurzbauer, D. Hilber, M.E. de Araujo, M. Erlacher, M.
Offterdinger, A. Villunger, S. Geley, G. Bohn, Others, p14-MP1-MEK1 signaling
regulates endosomal traffic and cellular proliferation during tissue
homeostasis, J. Cell Biol. 175 (2006) 861–868.

[7] C.L. Howe, W.C. Mobley, Signaling endosome hypothesis: a cellular mechanism
for long distance communication, J. Neurobiol. 58 (2004) 207–216.

[8] G. Di Guglielmo, P. Baass, W. Ou, B. Posner, J. Bergeron, Compartmentalization
of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not
insulin in liver parenchyma, EMBO J. 13 (1994) 4269.

[9] B.D. Grant, J.G. Donaldson, Pathways and mechanisms of endocytic recycling,
Nat. Rev. Mol. Cell Biol. 10 (2009) 597–608.

[10] A. Schenck, L. Goto-Silva, C. Collinet, M. Rhinn, A. Giner, B. Habermann, M.
Brand, M. Zerial, The endosomal protein Appl1 mediates Akt substrate
specificity and cell survival in vertebrate development, Cell 133 (2008) 486–
497.

[11] L. Munsie, A. Milnerwood, P. Seibler, D. Beccano-Kelly, I. Tatarnikov, J. Khinda,
M. Volta, C. Kadgien, L. Cao, L. Tapia, et al., Retromer-dependent
neurotransmitter receptor trafficking to synapses is altered by the
Parkinson’s disease VPS35 mutation p. D620N, Hum. Mol. Genet. 24 (2015)
1691–1703.

[12] A. Tomas, C.E. Futter, E.R. Eden, EGF receptor trafficking: consequences for
signaling and cancer, Trends Cell Biol. 24 (2014) 26–34.

[13] G. Auciello, D.L. Cunningham, T. Tatar, J.K. Heath, J.Z. Rappoport, Regulation of
fibroblast growth factor receptor signalling and trafficking by Src and Eps8, J.
Cell Sci. 126 (2013) 613–624.

[14] K.W. Dunn, M.M. Kamocka, J.H. McDonald, A practical guide to evaluating
colocalization in biological microscopy, Am. J. Physiol. Cell Physiol. 300 (2011)
C723–C742.

[15] P. Sarder, A. Nehorai, Deconvolution methods for 3-D fluorescence microscopy
images, IEEE Signal Process. Mag. 23 (2006) 32–45.

[16] M.A. Lemmon, J. Schlessinger, K.M. Ferguson, The EGFR family: not so
prototypical receptor tyrosine kinases, CSH Perspect. Biol. 6 (2014) a020768.

[17] H. Stenmark, Rab GTPases as coordinators of vesicle traffic, Nat. Rev. Mol. Cell
Biol. 10 (2009) 513–525.

[18] A. Levitzki, A. Gazit, Tyrosine kinase inhibition: an approach to drug
development, Science 267 (5205) (1995) 1782–1788.

[19] E. Macia, M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, T. Kirchhausen,
Dynasore, a cell-permeable inhibitor of dynamin, Dev. Cell 10 (2006) 839–850.

[20] J.-M. Hsu, C.-T. Chen, C.-K. Chou, H.-P. Kuo, L.-Y. Li, C.-Y. Lin, H.-J. Lee, Y.-N.
Wang, M. Liu, H.-W. Liao, et al., Crosstalk between Arg 1175 methylation and
Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK
activation, Nat. Cell Biol. 13 (2011) 174–181.

[21] A. Buades, B. Coll, J.-M. Morel, A review of image denoising algorithms, with a
new one, Multiscale Model. Simul. 4 (2005) 490–530.

[22] C. Kervrann, C.Ó.S. Sorzano, S.T. Acton, J.-C. Olivo-Marin, M. Unser, A guided
tour of selected image processing and analysis methods for fluorescence and
electron microscopy, IEEE J. Sel. Top. Signal Process. 10 (2016) 6–30.

[23] J. Adler, I. Parmryd, Colocalization analysis in fluorescence microscopy,
Methods Mol. Biol. 931 (2013) 97–109.

[24] E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen
Wahrnehmung, Arch. Mikrosk. Anat. 9 (1873) 413–418.

[25] S. Bolte, F. Cordelieres, A guided tour into subcellular colocalization analysis in
light microscopy, J. Microsc. 224 (2006) 213–232.

[26] T. Lagache, N. Sauvonnet, L. Danglot, J.-C. Olivo-Marin, Statistical analysis of
molecule colocalization in bioimaging, Cytometry A 87 (6) (2015) 568–579.

[27] R.B. Sekar, A. Periasamy, Fluorescence resonance energy transfer (FRET)
microscopy imaging of live cell protein localizations, J. Cell Biol. 160 (2003)
629–633.

[28] M. Miaczynska, S. Christoforidis, A. Giner, A. Shevchenko, S. Uttenweiler-
Joseph, B. Habermann, M. Wilm, R.G. Parton, M. Zerial, APPL proteins link Rab5
to nuclear signal transduction via an endosomal compartment, Cell 116 (2004)
445–456.

[29] M. Ward, A. Cunningham, Developmental expression of vascular endothelial
growth factor receptor 3 and vascular endothelial growth factor C in forebrain,
Neuroscience 303 (2015) 544–557.
[30] A. Frederick, H. Yano, P. Trifilieff, H. Vishwasrao, D. Biezonski, J. Mészáros, E.
Urizar, D. Sibley, C. Kellendonk, K. Sonntag, et al., Evidence against dopamine
D1/D2 receptor heteromers, Mol. Psychiatry (2015).

[31] B.D. Ripley, The second-order analysis of stationary point processes, J. Appl.
Probab. (1976) 255–266.

[32] J. Adler, I. Parmryd, Quantifying colocalization by correlation: the Pearson
correlation coefficient is superior to the Mander’s overlap coefficient,
Cytometry A 77 (2010) 733–742.

[33] E. Manders, F. Verbeek, J. Aten, Measurement of co-localization of objects in
dual-colour confocal images, J. Microsc. 169 (1993) 375–382.

[34] E. Manders, J. Stap, G. Brakenhoff, R. Van Driel, J. Aten, Dynamics of three-
dimensional replication patterns during the S-phase, analysed by double
labelling of DNA and confocal microscopy, J. Cell Sci. 103 (1992) 857–862.

[35] V.R. Singan, T.R. Jones, K.M. Curran, J.C. Simpson, Dual channel rank-based
intensity weighting for quantitative co-localization of microscopy images,
BMC Bioinformatics 12 (2011) 407.

[36] F. Humpert, I. Yahiatene, M. Lummer, M. Sauer, T. Huser, Quantifying
molecular colocalization in live cell fluorescence microscopy, J. Biophotonics
8 (2015) 124–132.

[37] S.V. Costes, D. Daelemans, E.H. Cho, Z. Dobbin, G. Pavlakis, S. Lockett,
Automatic and quantitative measurement of protein-protein colocalization
in live cells, Biophys. J. 86 (2004) 3993–4003.

[38] J.H. McDonald, K.W. Dunn, Statistical tests for measures of colocalization in
biological microscopy, J. Microsc. 252 (2013) 295–302.

[39] F. Luisier, C. Vonesch, T. Blu, M. Unser, Fast interscale wavelet denoising of
Poisson-corrupted images, Signal Process. 90 (2010) 415–427.

[40] D. Sage, D. Prodanov, J.-Y. Tinevez, J. Schindelin, MIJ: making interoperability
between ImageJ and Matlab possible, ImageJ User & Developer Conference,
2012, pp. 24–26.

[41] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of
image analysis, Nat. Methods 9 (2012) 671–675.

[42] J.B. Pawley, Sources of noise in three-dimensional microscopical data sets,
Three-Dimensional Confocal Microscopy: Volume Investigation of Biological
Specimens, 2012, pp. 47–94.

[43] C. Li, C. Xu, C. Gui, M.D. Fox, Distance regularized level set evolution and its
application to image segmentation, IEEE Trans. Image Process. 19 (2010)
3243–3254.

[44] V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Int. J. Comput.
Vision 22 (1997) 61–79.

[45] M. Maška, V. Ulman, D. Svoboda, P. Matula, P. Matula, C. Ederra, A. Urbiola, T.
España, S. Venkatesan, D.M. Balak, et al., A benchmark for comparison of cell
tracking algorithms, Bioinformatics 30 (2014) 1609–1617.

[46] S.R. Sternberg, Biomedical image processing, IEEE Comput. 16 (1983) 22–34.
[47] Y. Mishchenko, A fast algorithm for computation of discrete Euclidean distance

transform in three or more dimensions on vector processing architectures,
Signal Image Video Process. 9 (2015) 19–27.

[48] N. Otsu, A threshold selection method from gray-level histograms, Automatica
11 (1975) 23–27.

[49] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
Preibisch, C. Rueden, S. Saalfeld, B. Schmid, et al., Fiji: an open-source platform
for biological-image analysis, Nat. Methods 9 (2012) 676–682.

[50] F. De Chaumont, S. Dallongeville, N. Chenouard, N. Hervé, S. Pop, T. Provoost, V.
Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, et al., Icy: an open
bioimage informatics platform for extended reproducible research, Nat.
Methods 9 (2012) 690–696.

[51] N. Chenouard, Advances in probabilistic particle tracking for biological
imaging (thesis), 2011.

[52] C.H. Li, C. Lee, Minimum cross entropy thresholding, Pattern Recognit. 26
(1993) 617–625.

[53] C. Collinet, M. Stӧter, C.R. Bradshaw, N. Samusik, J.C. Rink, D. Kenski, B.
Habermann, F. Buchholz, R. Henschel, M.S. Mueller, et al., Systems survey of
endocytosis by multiparametric image analysis, Nature 464 (2010) 243–249.

[54] P. Kozik, N.A. Hodson, D.A. Sahlender, N. Simecek, C. Soromani, J. Wu, L.M.
Collinson, M.S. Robinson, A human genome-wide screen for regulators of
clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase,
Nat. Cell Biol. 15 (2013) 50–60.

[55] S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (1982)
129–137.

http://refhub.elsevier.com/S1046-2023(17)30032-4/h0025
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0025
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0025
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0030
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0030
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0030
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0030
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0035
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0035
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0040
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0040
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0040
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0045
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0045
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0050
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0050
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0050
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0050
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0055
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0060
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0060
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0065
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0065
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0065
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0070
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0070
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0070
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0075
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0075
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0080
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0080
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0085
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0085
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0090
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0090
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0095
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0095
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0100
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0100
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0100
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0100
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0105
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0105
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0110
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0110
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0110
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0115
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0115
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0120
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0120
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0125
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0125
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0130
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0130
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0135
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0135
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0135
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0140
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0140
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0140
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0140
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0145
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0145
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0145
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0150
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0150
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0150
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0155
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0155
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0160
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0160
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0160
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0165
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0165
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0170
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0170
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0170
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0175
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0175
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0175
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0180
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0180
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0180
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0185
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0185
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0185
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0190
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0190
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0195
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0195
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0200
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0205
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0205
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0205
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0210
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0210
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0210
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0210
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0215
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0215
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0215
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0220
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0220
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0225
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0225
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0225
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0230
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0235
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0235
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0235
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0240
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0240
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0245
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0245
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0245
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0250
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0250
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0250
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0250
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0255
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0255
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0255
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0260
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0260
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0265
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0265
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0265
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0270
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0275
http://refhub.elsevier.com/S1046-2023(17)30032-4/h0275


Methods 115 (2017) 17–27
Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier .com/locate /ymeth
Super-resolution for everybody: An image processing workflow to obtain
high-resolution images with a standard confocal microscope
http://dx.doi.org/10.1016/j.ymeth.2016.11.003
1046-2023/� 2016 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: susanne.bolte@upmc.fr (S. Bolte).
France Lama, Damien Cladière b, Cyndélia Guillaume a, Katja Wassmann b, Susanne Bolte a,⇑
a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Core Facilities - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France
b Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratory of Developmental Biology - Institut de Biologie Paris Seine (IBPS), 75005 Paris, France

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 July 2016
Received in revised form 2 November 2016
Accepted 4 November 2016
Available online 5 November 2016

Keywords:
Confocal microscopy
Deconvolution
Refractive index matching
3D-SIM-like resolution improvement
Meiotic spindle
In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in
thick biological samples, such as the mouse oocyte. We therefore developed an image processing work-
flow that allows improving the lateral and axial resolution of a standard confocal microscope. Our work-
flow comprises refractive index matching, the optimization of microscope hardware parameters and
image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the
necessity of denoising and establish the optimal image restoration procedure. We validate our workflow
by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of
the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of
fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of
approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60 lm. This
demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-
imaging, but with better depth penetration for confocal images of beads and the biological sample.
� 2016 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the past ten years one of the most fundamental chal-
lenges in 3D imaging was to break the diffraction barrier of light
in optical microscopy to attain super-resolution images [1]. These
new super-resolution techniques may be based on the precise
localization of fluorochromes, such as PALM/STORM, which needs
high power excitation and numerous acquisitions to collect enough
photons. On the other hand, non-linear fluorophore responses such
as Stimulated Emission Depletion (STED) help increasing the reso-
lution. STED is based on the selective deactivation of fluorophores
by a high power depletion laser, minimising the area of illumina-
tion at the focal point, and thus enhancing the achievable resolu-
tion for a given system. Sample preparation in PALM/STORM and
STED-microscopy demands for dyes with specific characteristics
and fluorochrome environment, especially if multicolour labelling
is needed. Another major drawback is that 3D-information is
difficult to achieve and the depth penetration of these techniques
is limited to a few lm for PALM/STORM and below 20 lm for STED.

3D-Structured Illumination Microscopy (3D-SIM), a technique
based on illumination patterning has recently emerged as a
practicable approach to circumvent the diffraction limit of light,
avoiding complex sample preparation protocols. 3D-SIM requires
the acquisition of at least 15 images per plane and the image con-
trast has to be good enough to extract high frequencies. 3D-SIM
allows obtaining a spatial resolution of 100–150 nm laterally and
250–350 nm axially, thus improving resolution by a factor of
approximately two compared to confocal microscopy [1–3]. This
technique has enabled high resolution imaging of the cellular com-
ponents such as the microtubule (MT) network in cells and organ-
isms [4,5]. However, standard 3D-SIM is limited to an imaging
depth of 10–20 lm [6] and therefore difficult to achieve in thicker
samples. The reasons for this are the inherent out-of-focus back-
ground of this wide-field approach. Furthermore, bulky samples
do not allow obtaining a good fringe contrast necessary for the
reconstruction of the 3D-SIM-image. Using two-photon SIM, the
depth penetration limit has been broken enabling super-
resolution imaging in depth beyond 45 lm [5,7]. Yet, 3D-SIM and
2-photon SIM are methods that call for specialised equipment
and expertise, and are not accessible to every biologist. PALM/
STORM, STED and 3D-SIM require image reconstruction/processing
as a final step and can be applied in a restricted manner to live
imaging [1]. However, even though these techniques have been
democratised recently by the emergence of commercial solutions
they ask for high technical expertise and specific hardware, they
are time consuming and display inherently high photo-toxicity [1].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2016.11.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ymeth.2016.11.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:susanne.bolte@upmc.fr
http://dx.doi.org/10.1016/j.ymeth.2016.11.003
http://www.sciencedirect.com/science/journal/10462023
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On the other hand, confocal microscopy, a valuable tool for
optical sectioning of thick samples has become a standard
technique accessible to every biologist. A conventional confocal
microscope may reach resolutions of 200 nm laterally and
500 nm axially, if properly adjusted [8]. Furthermore, image
restoration by deconvolution, a powerful computational process
used to reduce out-of-focus light in 3D-fluorescent images, can
be combined with confocal imaging. This combination has been
proven useful to enhance image contrast, improve the signal-to-
noise ratio and resolution [9–11]. However, deconvolution of con-
focal data is still scarcely used. This might be due to the fact that
deconvolution requires expertise and a neat measurement of the
impulse response of the optical system; the point spread function
(PSF). When focussing deep into a biological specimen the PSF is
distorted by spherical aberrations due to refractive index mis-
matches [12], and might then not be precise enough to perform
high fidelity deconvolution. Besides, scattering is also an issue in
thick and optically dense samples. To counteract the negative
influence of the distorted PSF on the deconvolution results, one
might use a PSF taken directly from the biological image, if the
structures investigated have the appropriate shape [13]. It is also
possible to compute theoretical PSF [14]. Alternatively, adaptive
optics could be used to minimize the distortion of the wave front
in depth of the sample [15]. Another possibility to avoid spherical
aberration and thus distortion of the PSF would be refractive index
matching of the sample [16]. We have recently shown that accu-
rate refractive index matching of the sample and the mounting
medium improves considerably the axial resolution and depth
penetration in fixed brain tissue [17]. We furthermore showed that
the fixed biological tissue has an overall refractive index that is
close to that of the optical system (1.518), rendering the tissue very
transparent. This minimizes scattering and the PSF measured after
focussing up to 120 lm into this sample was not impaired by
spherical aberration and thus distortion-free.

In the present study, we aim at applying this knowledge on the
mouse oocyte, a rather bulky sample with a diameter of nearly
100 lm. Our scientific project aims at improving microtubule
(MT) imaging at high resolution in the meiotic spindle. High
resolution imaging of the meiotic spindle will be important to
tackle outstanding questions regarding the influence of the struc-
tural organisation of the MTs network on meiotic division in the
future. Microtubules of the meiotic spindle are hollow tubes of
25 nm in diameter, consisting of 13 protofilaments composed of
alpha- and beta-tubulin heterodimers. These polymers are highly
dynamic and stochastically switch between polymerisation and
depolymerisation, a process known as dynamic instability [18].
MT dynamics and structural organisation is tightly regulated by a
plethora of MT-associated proteins (MAPs) [19]. To understand
how the precise organisation of the MT network contributes to
essential cellular processes such as chromosome segregation dur-
ing meiosis, a detailed reconstruction and analysis of the spatial
distribution of MTs as well as their length, orientation and anchor-
ing to kinetochores in oocytes is decisive. However, conventional
fluorescence microscopy of these polymers and their associated
proteins in mammalian oocytes is limited by light diffraction and
by the thickness of the sample. Visualizing the attachment of indi-
vidual microtubule fibres on each sister kinetochore is beyond the
resolution limit of classical confocal imaging.

In the present paper, we combine refractive index matching,
optimization of imaging parameters and deconvolution of confocal
data. Several commercial solutions have been recently developed
to improve lateral and axial resolution of confocal imaging. Leica’s
Hyvolution and Olympus’ FV-OSR solution both use a standard
confocal microscope, customized with optimized acquisition and
detection system (pinhole closure and high sensitivity, low-noise
detector) coupled to image restoration. A different approach is
used in the Zeiss’ Airyscan configuration where all photons are col-
lected from the volume excited with concentrically arranged
hexagonal detector array. Its detection area consists of 32 single
detector elements, acting as very small pinholes. The signals from
these detector elements are reassigned to their correct position,
producing an image with increased signal-to-noise ratio and
resolution.

We propose a workflow similar to the solution from Leica and
Olympus, with the difference, that we adapt the mounting medium
by refractive index matching with the biological sample. This
matching decreases the impact of the spherical aberration and
improves thus axial resolution. Our workflow allows to improve
the lateral and axial resolution of the confocal microscope, gaining
resolutions comparable to 3D-SIM-imaging, but with a much bet-
ter depth penetration. In a first step, we characterize the resolution
of our optical system by acquiring sub resolution fluorescent beads
using this workflow. We then demonstrate that this optimized
workflow improves considerably the resolution of biological imag-
ing when applied to the meiotic spindle of mouse oocytes.
2. Materials and methods

2.1. Oocyte culture and whole-mount immunofluorescence

Oocytes were obtained from ovaries of adult Swiss mice
10–16 weeks old (Janvier, France) and cultured in self-made M2
medium, as previously described [20]. Oocytes entering meiosis I,
visible through Germinal Vesicle Breakdown (GVBD), within
60 min after harvesting were used for experiments. Before using
oocytes for fixation, the zona pellucida was removed by incubation
in Tyrode’s solution [21].

Between 6 h and 6h30 after GVBD, zona pellucida-free oocytes
were placed into self-made chambers in order to manipulate them
easily. Oocytes were cytospinned in chambers coated with con-
canavalin A (at 0.2 mg/ml, from Sigma) to keep oocytes in place,
for 13 min at 1400 RPM at 38 �C. Cold-stable spindles were
obtained by incubating the individual chambers on an ice-water
bath for 4 min before fixation. Oocytes were fixed with 2%
Formaldehyde solution (Sigma-Aldrich; F1635) in BRB80 buffer
with Triton TX-100 during 30 min at 38 �C, as described [22]. After
PBS washing, oocytes were incubated overnight in a PBS-BSA 3%
Triton TX-100 solution for permeabilisation and blocking unspeci-
fic antibody binding.

Antibody staining of fixed oocytes was done using the antibod-
ies below at the indicated dilutions in PBS: Human CREST autoim-
mune antibody (Cellon SA, HCT-0100; 1/100), and mouse
monoclonal a-tubulin (DM1A) coupled to FITC (Sigma-Aldrich,
F2168; 1/100). As secondary antibody CY3 anti rabbit (Jackson
ImmunoResearch, 711-166-152; 1/200) was used. Antibody incu-
bation times were at least one hour. Chromosomes were stained
with 5 lg/ml Hoechst 33342 during incubation with the secondary
antibody. Oocytes were washed several times with PBS between
antibody incubations and before mounting the chamber [22].
2.2. Mounting media

We used AF1 (Citifluor, UK), a commercially available mounting
medium with a refractive index of 1.463 and AF1+, a modified AF1
solution harbouring a refractive index of 1.518. The refractive
index increase of AF1+ solution was obtained by adding 83%
(w/w) of Methyl-Phenylsulfoxid (Sigma-Aldrich, #261696) to
AF1-solution. Refractive indices were verified at 21 �C using a
refractometer (Mettler Toledo, Switzerland).
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2.3. Preparation of Sub-resolution fluorescent beads

The experimental setup for evaluating lateral and axial
resolution at the coverslip and in depth was designed as followed:
fluorescent beads (PS-Speck, Lifetechnologies), of a diameter of
100 nm, and loaded with yellow-green fluorescent dye, were
diluted in water (1/800 v/v). Drops of the water-diluted sample
were put on the surface of the coverslip (Menzel Glaeser #1.5, Agar
scientific) or slide and air-dried. The coverslip and slide were
Fig. 1. Resolution measurements with sub-resolution microspheres: influence of deconv
used to measure the lateral and axial resolution of the optical system at the coverslip and
the detection pinhole set to 1 Airy Unit (AU) and 0.6 AU were acquired. The Full Width a
z-direction in the maximum intensity plane of the image stack, respectively and transfe
nm. (A) Raw bead images (black and dotted bars) and deconvoluted bead images (stripe
significantly the lateral (raw: 225 ± 12; decon: 134 ± 3) and axial resolution (raw: 546 ±
lateral (raw: 223 ± 11; decon: 134 ± 3) and axial resolution (raw: 550 ± 19; decon: 224 ±
bead images at the coverslip (black and dotted bars) and in 60 lm depth (striped and
significant axial resolution loss in AF1-medium at 1 AU (coverslip: 193 ± 13; depth: 453
the resolution of beads taken at 1 Airy unit (black and dotted bars) and 0.6 Airy unit
measurements at the coverslip (D) show a significant lateral resolution improvement w
Mann-Whitey test, p = 0.0001), and a substantial axial resolution increase (1 AU: 193 ± 1
improvement at 0.6 AU is also observed in AF1+-medium (1 AU: 134 ± 3; 0.6 AU: 106 ±
(1 AU: 210 ± 21; 0.6 AU: 192 ± 17, Mann-Whitey test, p = 0.0001). In depth (E), no resolu
(1 AU: 453 ± 89; 0.6 AU: 471 ± 89) in AF1-medium. However, when using AF1+-medium
120 ± 7, Mann-Whitey test, p = 0.0001) and in the axial direction (1 AU: 210 ± 21; 0.6 A
separated by one layer of adhesive tape (Scotch�, 3 M) with a nom-
inal thickness of 60 lm and the volume filled with a drop of the
respective mounting medium.

2.4. Confocal laser scanning microscopy

8-bit Images were collected using a Leica 63� oil immersion
objective (HCX Plan APO CS, NA 1.4, working distance 0.14 mm)
with an inverted Leica laser-scanning confocal microscope TCS
olution, refractive index and pinhole aperture. 100 nm green fluorescent beads were
in 60 lm depth. For excitation, the 488 nm laser line was used and two series with
t Half Maximum (FWHM) was measured using a line profile in x, y-direction and x,
rred to a graph (A–E). All data in brackets are given as mean ± SD and have the unit
d and white bars) taken at the coverslip were compared. Deconvolution improved
18; decon: 193 ± 13) of beads in AF1. Deconvolution improved also significantly the
18) of beads in AF1+-medium. (B and C) Lateral and axial resolution of deconvoluted
white bars) at 1 AU (B) and 0.6 AU (C). Resolution measurements in depth show a
± 89) and at 0.6 AU (coverslip: 182 ± 10; depth: 471 ± 89). (D and E) Comparison of
(striped and white bars) at the coverslip (D) and in 60 lm depth (E). Resolution
hen closing the pinhole to 0.6 AU in AF1-medium (1 AU: 134 ± 3; 0.6 AU: 120 ± 5,
3; 0.6 AU: 182 ± 10, Mann-Whitey test, p = 0.0001). A significant lateral resolution
4, Mann-Whitey test, p = 0.0001) and axial resolution improves substantially, too
tion improvement is observed laterally (1 AU: 140 ± 10; 0.6 AU: 136 ± 9) or axially
, resolution improves significantly in the lateral direction (1 AU: 133 ± 6; 0.6 AU:

U: 192 ± 17, Mann-Whitey test, p = 0.0003).
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SP5 II (Leica Microsystems, Heidelberg, Germany) equipped with a
GaAsP hybrid detection system at a sampling rate of 40 nm in x,y-
and 83 nm in z-direction unless otherwise stated. Fluorochromes
were detected using laser lines 405 nm, 488 nm and 561 nm. Imag-
ing was performed in a temperature-controlled room at 21 �C. The
detection pinhole aperture was adjusted to 1 Airy unit or 0.6 Airy
units. Slow scanning speeds may improve the signal-to-noise ratio
and the resolution of the image since more photons may be
Fig. 2. Determination of optimal deconvolution parameters, R-Parameter. Mouse oocy
adjusted to 0.6 Airy Unit and taken with a 40 nm pixel size and an 83 nm z step size
x, y-maximum projections of the raw data (A), and the deconvoluted data with R-parame
the line profile used for fluorescence intensity measurements shown in the graphs next to
noise and were calculated as described in (2.8). The boxes indicate the regions of interest,
30 gave best results. Scale bar is 5 lm.
collected by pixel. The cutoff value has to be determined for every
biological sample, since slower scan speed results in higher photo
bleaching. We tested scan speeds of 400, 200, 100 and 50 Hz. For
the given biological sample the optimal scan speed was 400 Hz.
We also tested Immersion oils with refractive indexes from 1.510
to 1.520 to minimize spherical aberration (supp. Fig. 2). We used
an immersion oil harbouring a refractive index of 1.518 for all
image acquisitions.
tes stained with FITC-tubulin and imaged at 488 nm with the detection pinhole
were deconvoluted varying the R-parameter between 26, 28 and 30. Images show
ter 26 (B), R-parameter 28 (C), and R-parameter 30 (D). Inserts show the position of
each image (A0–D0). S/N-ratios indicated in (A0–D0) are a value for the image intrinsic
where 5 main peaks can be separated after deconvolution. Note that R-parameter of
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2.5. Image acquisition of beads

Bead images were obtained as in [17] with the following mod-
ifications. GaAsP gain was set to 15% and the laser power adjusted
so that the signal occupied the full dynamic range of the detector,
but saturated voxels were carefully avoided. Beads were imaged
starting and finishing the stack at least 5 lm below and above
the bead centre. Beads were visually checked and improper stacks
were discarded before determining the microscope PSF.

Beads used for resolution measurements (Fig. 1) were acquired
at a sampling rate of 32 nm in x, y and 42 nm in z-direction. An
Fig. 3. Influence of denoising on the deconvolution result. Images show x, y-maximum p
the denoised, deconvoluted data (D). Deconvolution was carried using the CMLE-algorit
used for fluorescence intensity measurements shown in the graphs next to each image (A
where 5 main peaks can be separated after deconvolution. Note that denoising considerab
denoising and deconvolution gave comparable results. However, denoising improves th
average of 60 beads was taken for each measurement. Beads used
for deconvolution were acquired at a sampling rate of 40 nm in x,y
and 83 nm in z-direction. At least 15 beads were registered and
averaged in order to increase the SNR for deconvolution.

2.6. Resolution measurement with beads

Resolution measurements were carried out as in [18] using
ImageJ with the following modifications:

We took the maximum intensity plane of the image stack along
the x, y and z-axis resulting in 1D intensity profiles. A x,y- and
rojections of the raw data (A), the deconvoluted data (B), the denoised data (C) and
hm (R-parameter = 30, 500 iterations). Inserts show the position of the line profile
0–D0). S/N-ratios are indicated in (A0–D0). The boxes indicate the regions of interest,
ly improves the S/N-value of the raw data. Deconvoluted data and a combination of
e S/N-value of the deconvoluted data. Scale bar is 5 lm.
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z-line-profile was generated manually along a line passing through
the 2D maximum. From this image, fluorescence intensity profiles
were fitted to a Gaussian curve, using ImageJ’s built-in curve fitting
function. The full width at half maximum (FWHM) of the gaussian
curve was calculated for each profile, based on the parameters
retrieved from the fitting (supp. Fig. 3A).
Fig. 4. Comparison of deconvolution algorithm CMLE and GMLE. Images show data deco
software, the Classical Maximum Likelyhood Estimation (CMLE) and the Good’s Maximu
set to 30 for both methods. Images show x, y-maximum projections of the CMLE-deconv
data (C), and the denoised, GMLE deconvoluted data (D). Inserts show the position of the
to each image (A0–D0), the boxes indicate the position of the 5 main peaks compared befo
method. The GMLE-algorithm gives the best visual result. Scale bar is 5 lm.
2.7. Deconvolution and image treatment

Confocal images of beads and biological data were deconvo-
luted with the Huygens 3.7 software (Scientific Volume Imaging,
Hilversum, Netherlands) using a measured PSF (supp. Fig. 3B).
We tested the Classical Maximum Likelihood Estimation (CMLE)
nvoluted with two different deconvolution algorithms implemented in the Huygens
m Likelyhood Estimation (GMLE). Deconvolution was carried with the R-parameter
oluted data (A), the GMLE deconvoluted data (B) the denoised, CMLE deconvoluted
line profile used for fluorescence intensity measurements shown in the graphs next
re. Note that denoising improves the S/N of the CMLE-method, but not of the GMLE-



Fig. 5. Impact of refractive index matching in mouse oocytes. Images show x, y-maximum projections (A, B, lateral view), a cut-out of a single plane in a depth of 10 lm
(insert of A, B) and x, z-projections (A0 , B0) of mouse oocytes stained with FITC-tubulin and imaged at 488 nm in AF1-medium (A, A0) and AF1+-medium (B, B0). All data in
brackets are given as mean ± SD and have the unit nm. Microtubule bundle diameters were measured in single images of raw data (images not shown) and deconvoluted data
(raw data/deconvolved data; 390 ± 131 /218 ± 45). A 2-fold amelioration of resolution was noted after deconvolution. Lateral resolution of microtubule bundles in AF1
and AF1+-medium was comparable (AF1/AF1+; 232 ± 33/204 ± 57). Axial resolution of microtubule bundles was measured in AF1 and AF1+-medium (AF1/AF1+;
402 ± 10 7/292 ± 49). Note that refractive index matching with AF1+ improves considerably the axial resolution (A0 , B0). Scale bars are 5 lm.
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algorithm and the Good’s (GMLE) algorithm. Signal-to-noise ratios,
also called the R-parameter from 15 to 20 are recommended by the
manufacturer for noisy confocal images R-values >20 for low noise
wide-field images. Since we used a confocal microscope with a low
noise detector, we tested R-parameters of 26–34 and visually
inspected the results. In images of Fig. 2–6 brightness and contrast
were adjusted equally for all images after deconvolution and
before 3D reconstruction and volume rendering. Image analysis
was performed with ImageJ [23] and 3D-volume rendering was
performed with ICY [24]. Deconvolution was performed with a
measured PSF, with a quality threshold of 0.001, varying
R-parameters as stated, performing 500 iterations in the optimized
mode with CMLE-method and 125 iterations with the GMLE-
method. Denoising was performed using the Pure Denoise Plugin
[25–27] implemented in ImageJ with the cycle spin and the multi-
frame parameter set to maximum.
2.8. Signal to noise ratio calculation

To calculate the SNR, we choose a threshold with the Shanbhag
mode on ImageJ (supp. Fig. 4). We created a mask to measure the
average intensity of our structure and with the inverted
thresholded image; we create a second mask to measure the aver-
age intensities of the background. We finally calculate the SNR as
average intensity/average background.
3. Results and discussion

3.1. Resolution measurement using sub-resolution microspheres

We first aimed at developing a workflow, consisting of opti-
mized sample preparation, image acquisition and deconvolution
parameters to obtain the best resolution with our standard
confocal microscope. We therefore investigated the lateral and
axial resolution of the confocal microscope, using a high numerical
aperture lens (63�, NA 1.4, oil immersion).

We determined the Point Spread Function (PSF) using two dif-
ferent mounting media, and varying the detection pinhole aper-
ture. The PSF is the impulse response of the focused optical
system and gives information about the lateral and axial resolution
of the optical system. The PSF was measured by imaging 3D stacks
of 100 nm fluorescent beads at different depths. The lateral and
axial resolutions were estimated from the full-width at half-
maximum (FWHM) of the intensity profile of the PSF. We com-
pared beads mounted in AF1 with a refractive index of 1.463 with
beads mounted in AF1+, a modified AF1, harbouring a refractive
index of 1.518. In the first case we introduced a mismatch of the
refractive index (ri) between the sample (ri = 1.463) and the
glass-oil-interface (ri = 1.518) thus producing spherical aberrations
when focussing away from the coverslip. In the second case, we
perfectly matched the sample (ri = 1.518) with the glass-oil-
interface (ri = 1.518), thus minimizing spherical aberrations.
3.1.1. Resolution improvement by deconvolution
Firstly, we determined the resolution of the confocal micro-

scope before and after deconvolution of confocal data of beads in
the ri-mismatched and ri-matched case with the detector pinhole
set at 1 Airy Unit (AU). The resolution of the optical system taken
from the raw images was 225 nm ± 12 nm in x,y and 546 nm ±
18 nm in z-direction in AF1-medium and 223 nm ± 11 nm in x,y
and 550 nm ± 19 nm in z-direction in AF1+-medium (Fig. 1A,
Table 1). After deconvolution, we observed a 1.7-fold increase in
lateral resolution for both mounting media, a 2.8-fold increase in
axial resolution for AF1 and a 2.5-fold increase for AF1+ for beads



Fig. 6. 3D-reconstruction of data. Mouse oocytes were triple stained with Hoechst (chromosomes), FITC (microtubules) and CY3 (kinetochores). Images show 3D-renderings
of raw data (A–A0) and deconvoluted data (B–B0). Magnifications of a region of (A, B) with arrows indicating microtubules (A0 , B0) and arrowheads showing kinetochores (A0 , B0)
show the resolution improvement after deconvolution, where separate microtubules and two adjacent kinetochores can clearly be separated.
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imaged next to the coverslip (Fig. 1 A, Table 1). The resolution
values for AF1 and AF1+-mounted beads were comparable, corrob-
orating previous findings, that close to the coverslip, a refractive
index mismatch does not impair lateral and axial resolution since
high numerical aperture objectives are corrected for this [13,18].
Having established that deconvolution improves indeed the reso-
lution of confocal data, we secondly analysed how the refractive
index mismatch would impact resolution when looking at beads
at a depth of 60 lm (Fig 1B, deconvoluted data, Table 1). The lateral
Table 1
Resolution measurement with fluorescent subresolution beads.

AF1 coverslip AF 60 lm depth

1 AU (nm) 0.6 AU (nm) 1 AU (nm) 0.6 AU

xy (raw) 207 177 309 294
xy (deconvoluted) 121 105 140 136
z (raw) 416 386 1532 1383
z (deconvoluted) 167 151 453 470
resolution of the beads was comparable for the two mounting
media, which confirmed that the lateral resolution in depth is
not impaired in a mismatched system [12,17]. However, axial
resolution was 2.2-times inferior in AF1-medium compared to
AF1+-medium. Besides, we observed a considerable loss of peak
intensity at a depth of 60 lm in AF1-medium. We had to adjust
the laser power accordingly in order to exploit the full dynamic
range of the image. This confirms the data, we published recently
for beads measured in CFM3, another high refractive index
AF1+ coverslip AF1+ 60 lm depth

(nm) 1 AU (nm) 0.6 AU (nm) 1 AU (nm) 0.6 AU (nm)

223 182 214 203
134 106 133 120
550 436 509 467
224 164 210 192
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mounting medium (ri = 1.518) where we observed the same phe-
nomenon [17]. The axial resolution of beads remained constant
in depth compared to the coverslip when applying refractive index
matching with AF1+. This means that spherical aberration is
minimized when using AF1+ medium, and our observation corrob-
orated previous theoretical and experimental findings of Hell and
co-workers [12] and our own findings for a perfectly matched
system [17].

3.1.2. Resolution improvement by closing the pinhole aperture
We then wanted to test if we could increase resolution of the

confocal microscope by closing the detection pinhole. We com-
pared resolution at the coverslip and in a depth of 60 lm with
the detector pinhole set to 0.6 AU (Fig. 1C, Table 1) and after decon-
volution of the data. Our choice of the 0.6 AU pinhole size was
based on several tests on our biological data. We acquired the same
type of biological sample with different pinhole sizes, from 1 AU to
0.4 AU and observed that 0.6 AU is the threshold where we discard
enough diffraction signal without photo-bleaching and with a good
contrast. Since the result depends largely on the quality and the
photo-stability of the biological sample the optimal pinhole value
has to be evaluated for each biological sample.

We observed lateral resolutions of 120 nm ± 5 nm (coverslip)
and 136 nm ± 9 nm (depth) and axial resolutions of 182 nm ±
10 nm (coverslip) and 471 nm ± 89 nm (depth) for the AF1 medium
(Fig. 1C, Table 1). We had again to compensate for the loss of peak
intensity by adjusting the laser power with the AF1 medium as
described before. For the AF1+-medium, lateral resolutions of
106 nm ± 4 nm (coverslip) and 120 nm ± 7 nm (depth) and axial
resolutions of 164 nm ± 8 nm (coverslip) and 192 nm ± 17 nm
(depth) were measured.

Fig. 1D and E shows the direct comparison of the optical resolu-
tion at 1 AU and 0.6 AU close to the coverslip (Fig. 1D, Table 1) and
in 60 lm depth (Fig. 1E, Table 1), respectively. We observed a
1.3-fold increase in lateral and axial resolution measured in
AF1-medium close to the coverslip (Fig. 1D, Table 1) when setting
the detection pinhole to 0.6 AU. The use of AF1+ medium improved
resolution 1.3-fold laterally and 1.4-fold axially at AU 0.6 at the
coverslip (Fig. 1. D, Table 1). In depth, a significant lateral and axial
resolution improvement was observed only for AF1+-medium at
0.6 AU. Besides, the use of AF1+ allowed maintaining a good axial
resolution of 192 nm ± 17 nm that is 2.5-times superior than with
AF1-medium (471 nm ± 89 nm), when closing the pinhole. It is
thus advantageous to use refractive index matching when closing
the detector aperture and imaging in depth.

Closing the pinhole indeed increased lateral and axial resolution
1.3–1.4-fold. These results are in good agreement with data
measured by Cox and Sheppard [28], who observed a 1.4-fold
increase in resolution after closing the pinhole aperture to 0.5
using a Leica TSC SP2 confocal microscope.

By optimizing sample preparation, image acquisition parame-
ters and performing deconvolution, our workflow allowed us to
obtain a considerable gain in lateral and axial resolution through-
out the sample thickness. Firstly, the lateral resolution attained
with 100 nm sub resolution fluorescent beads close to the coverslip
attained a value of 106 nm ± 4 nm. This is close to the real size of
the beads and comparable to the values published earlier for
3D-SIM-imaging [4]. Secondly, the axial resolution we obtained
with our workflow was 164 nm ± 8 nm and is thus approximately
1.6-fold better than the values published for 3D-SIM by Gustafsson
[4]. However, these results are in good agreement with a paper by
Schrader and colleagues [29], who demonstrated earlier that a res-
olution of 80 nm could be obtained axially on 50 nm gold particles
with a confocal microscope and after deconvolution. Given that we
used 100 nm beads, our results are consistent with these previous
findings. Thirdly, refractive index matching of the sample allowed
to maintain 3D-SIM-like resolution of 120 nm ± 7 nm laterally and
192 ± 17 nm axially in a depth of 60 lm. This depth surpasses by a
factor 3 the imaging depth of standard 3D-SIM [6].

3.2. Deconvolution optimization in biological data

Having established optimal image acquisition parameters, we
then wanted to apply our workflow on biological samples and
chose the meiotic spindle of the mouse oocyte labelled with
alpha-tubulin coupled with FITC. We acquired 3D-images of
meiotic spindles with a pinhole size of 0.6 Airy units at a sampling
rate of 40 nm in x,y and 83 nm in z-direction. We wanted to deter-
mine the optimal deconvolution parameters and tested the Classic
Maximum Likelihood Estimation (CMLE) and the Good’s roughness
Maximum Likelyhood Estimation algorithm (GMLE), implemented
in Huygens deconvolution software. CMLE and GMLE are iterative
restoration method optimizing the likelihood of an estimate of
the object given the measured image and the PSF. We also studied
the influence of denoising prior to deconvolution using the Pure
Denoising plugin implemented in ImageJ [26–28]. Finally we
compared raw data and data optimized by our workflow after
3D-reconstruction.

3.2.1. Establishment of the optimal Regularisation parameter
(R-parameter)

The Huygens software uses what the manufacturer calls the
Signal-to-Noise ratio as a Regularization Parameter (R-parameter),
i.e. as a parameter that controls the sharpness of the restoration
result. We will employ the term R-parameter in the following in
order to avoid confusion with the image intrinsic Signal-to-Noise
ratio (SNR) that we calculated to evaluate image quality.

The R-parameter is calculated as the square root of the number
of photons in the brightest part of the image and controls the
sharpness of the restoration result. The higher the R-parameter,
the sharper is the deconvolution result. R-parameter values recom-
mended by the manufacturer for noise-prone confocal data lie
between 15 and 20. Since we used a low-level-noise detector for
confocal imaging, we tested R-parameter values between 16 and
34. After adjusting the R-parameter, we visually inspected the
deconvolution result and observed that at an R-parameter >26,
microtubules were separated optimally, when compared to the
raw image (Fig. 2A–D). We also carried out fluorescence intensity
profile measurements to obtain a measurement of the separation
of tubulin structures in a single plane (Fig. 2A0–D4) and calculated
the image inherent SNR before and after deconvolution to estimate
image improvement. We noticed that microtubule separation
attained a maximum, setting the R-parameter to 30 (Fig. 2A0–D0).
The SNR increased from 3.1 in the raw image to 3.32 after
deconvolution with R-parameter set to 26. We started separating
5 peaks in the region of interest at an R-parameter of 28
(Fig. 2C0, box). At higher R-parameter, the SNR decreased slightly
to 3.24 (R-parameter 28) and 3.20 (R-parameter 30), showing that
the R-parameter introduces sharpness into the image. When using
R-parameters >30 we started introducing deconvolution artefacts
such as patterning, indicating that an R-parameter of 30 is optimal
for our dataset (Fig. 1, Supplementary Data 1 A–C).

3.2.2. Influence of denoising on the deconvolution of confocal data
Having established the optimal R-parameter, we now aimed at

studying the impact of denoising before deconvolution. It has been
proposed that denoising may be crucial before deconvolution and
may improve the restoration result [30]. We therefore denoised
the confocal data with the ‘‘Pure Denoising” plugin implemented
in ImageJ [25–27]. This plugin is well adapted for Poisson noise,
which is characteristic of fluorescence images. It estimates auto-
matically noise parameters such as detector gain, detector offset
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and the standard deviation of the additive white Gaussian noise.
We adjusted the number of cycle-spins and the number of adjacent
frames used to maximum values in order to get the highest quality
for our images. Denoising with the quality criteria set to maximum
was rather computing intense and took several hours for a
3D-image stack. Fig. 3 shows a comparison of the raw image
(A, A0), the denoised image (B, B0), the deconvolution of the raw
image (C, C0) and the deconvolution of the denoised image
(D, D0). When inspecting the fluorescence intensity profiles, denois-
ing alone did not improve the resolution of the image (Fig. 3B, B0),
even if it improved considerably the SNR. We observed a smooth-
ing of the fluorescence intensity profile (Fig. 3B0, box). We then
compared the deconvoluted dataset (Fig. 3C, C0, box) with the
denoised and deconvoluted image (Fig. 3D, D0, box). We observed
5 main peaks in the region of interest of the deconvoluted image
(Fig. 3C0). Denoising improved SNR of the restoration result. After
denoising we were still able to distinguish 5 peaks (Fig. 3D, D0

and box), even if the indentation was less prominent than in the
non-denoised dataset (Fig. 3C, C0, box). The overall aspect of the
image was smoother and as a result microtubules appeared less
spotty after denoising (Fig. 3 D, insert).
3.2.3. Comparison of CMLE and GMLE algorithm for the deconvolution
of confocal data

In a last step, we wanted to compare the CMLE-algorithm with
the Goods Maximum Likelihood Estimation (GMLE) algorithm. The
GMLE-methods needs 4-times less iterations than the CMLE-
method to obtain comparable restoration results, thus saving com-
putation time. We compared the image after deconvolution with
the CMLE-algorithm (Fig. 4A, A0) with that deconvoluted with the
GMLE-algorithm (Fig. 4B, B0). After visual inspection, we observed
that the GMLE-algorithm smoothed the deconvolution result more
that the CMLE-algorithm. Both algorithms gave comparable results
in separating the microtubules and 5 main peaks could be distin-
guished in both cases (Fig. 4A0, B0, box), however, the SNR was
higher for the GMLE-algorithm. Denoising did improve the SNR
of the image deconvoluted with CMLE-algorithm, however, the
SNR after GMLE-deconvolution remained constant, indicating that
denoising did not further improve image quality in this situation
(Fig. 4D, D0).
3.2.4. Influence of refractive index matching on the 3D-image
resolution

We have shown previously, that refractive index matching
greatly improves axial resolution of confocal data in the mouse
brain [17]. We therefore mounted mouse oocytes in AF1 and AF1
+, respectively and performed 3D imaging. Fig. 5 shows lateral
and axial views of the tubulin staining and after deconvolution.
We observed a 2-fold increase of lateral resolution when compar-
ing raw data to deconvoluted data. When considering the lateral
maximum projection, the overall aspect of the image in the two
mounting media was comparable (Fig. 5A, B). We then measured
the diameter of microtubule bundles throughout the depth of the
image stacks and detected comparable lateral resolution for AF1
and AF1+ (Fig. 5A, A0). However, axial resolution seemed to be
better in the ri-matched sample with AF1+ after visual inspection
(Fig. 5B0). We measured axial resolutions and found indeed a
1.4-fold increase of resolution in AF1+-medium, meaning that
refractive index matching is crucial in the biological sample. This
confirms the data obtained with beads, where a comparable
gain of axial resolution has been observed in depth using the
ri-matched system (Fig. 1C) and our data on biological samples
published earlier [17].
3.3. 3D-reconstruction of the meiotic spindle

Having established all optimal parameters, we applied them to
acquire 3D-stacks of triple stained mouse oocytes. We evaluated
the overall aspect of the meiotic spindle resolution. We used
alpha-tubulin coupled to FITC, to mark microtubules, Crest, a pro-
tein staining the kinetochore, which was revealed with a secondary
antibody coupled to Cy3, and Hoechst to stain the chromosomes.
Fig. 6 shows the 3D rendering of the raw data (A) and the deconvo-
luted data (B) of the meiotic spindle. We observed a clear improve-
ment in resolution and much better separated microtubules
(Fig. 6B0, arrows) and the kinetochores (Fig. 6B0, arrowheads) as
compared to the raw data (Fig. 6A0, arrows and arrowheads). With
these results, we provide evidence that our workflow, consisting of
refractive index matching, optimized image acquisition and decon-
volution improves greatly the overall resolution of the meiotic
spindle image.
4. Conclusion

The proposed workflow provides an important benefit to con-
focal imaging of fixed samples with a high numerical aperture
lens. We show first with beads that deconvolution improves by
1.7-fold lateral and by >2.6-fold the axial resolution of confocal
data. Secondly, we provide evidence that refractive index match-
ing is particular important to improve resolution and signal
strength of the confocal system, when imaging in depth, where
we obtain a 2.2-fold axial resolution improvement for the
matched system. Thirdly, we show that closing the pinhole
improves lateral and axial resolution by a factor 1.3 close to
the coverslip and that the spatial invariance of the PSF in depth
is crucial to preserve resolution in depth. We observe that decon-
volution of the biological confocal data improves 2-fold the
resolution compared to raw confocal data and that refractive
index matching helps to maintain optimal axial resolution in the
biological sample. We lastly show that denoising is advantageous
for image quality when using the CMLE-algorithm, however, it is
time consuming. Denoising is not necessary when using the
GLME-algorithm, which also needs much less computing time.
Summarized from these results, we were able to obtain confocal
images having a 3D-SIM-like resolution in a rather bulky sample,
the mouse oocyte. It would be of further interest to apply our
workflow on other biological samples and see if we are able to
maintain a 3D-SIM-like resolution at the full working distance
of the objective (140 lm).
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In this paper, we present a novel error measure to compare a computer-generated segmentation of
images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is
motivated by two observations that we usually encounter in biomedical image processing: (1) Some
errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application
dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be cor-
rected manually. The effort needed to do so should be reflected by the error measure. Our measure is the
minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles
another segmentation within specified tolerance bounds. This is in contrast to other commonly used
measures like Rand index or variation of information, which integrate small, but tolerable, differences.
Additionally, the TED provides intuitive numbers and allows the localization and classification of errors
in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in
electron microscopy images where topological correctness is arguable more important than exact bound-
ary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the
loss function in a max-margin learning framework to find parameters of an automatic neuron segmenta-
tion algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher
segmentation accuracy compared to other learning methods.

� 2016 Published by Elsevier Inc.
1. Introduction

In the computer vision literature, several approaches to assess
the quality of contour detection and segmentation algorithms can
be found. Most of these measures have been designed to capture
the intuition of what humans consider to be two similar results.
In particular, these measures are supposed to be robust to certain
tolerated deviations, like small shifts of contours. For the contour
detection in the Berkeley segmentation dataset [1], for example,
the precision and recall of detected boundary pixels within a
threshold distance to the ground truth became the widely used
standard [2,3]. Contour error measures are, however, not a good
fit for segmentations, since small errors in the detection of a con-
tour can lead to the split or merge of segments. Therefore, alterna-
tives like the Variation of Information (VOI), the Rand Index [4] (RI),
the probabilistic Rand index [5,6], and the segmentation covering
measure [3], have been proposed.

However, these measures do not acknowledge that there are
different criteria for segmentation comparison, and instead accu-
mulate errors uniformly, even for many small differences that are
irrelevant in practice. Especially in the field of biomedical image
processing, we are often more interested in counting true topolog-
ical errors like splits and merges of objects, instead of counting
small deviations from the ground truth contours. This is in partic-
ular the case for imaging methods for which no unique ‘‘ground
truth” labeling exists. In the imaging of neural tissue with Electron
Microscopy (EM), for example, the preparation protocol can alter
the volume of neural processes, such that it is hard to know where
the true boundary was [7]. Further, the imaging resolution and
data quality might just not be sufficient to clearly locate contours
between objects [8], resulting in a high inter-observer variability.
1.1. Contributions

The main contribution of this paper is a novel measure to eval-
uate segmentations on a clearly specified tolerance criterion to
address the aforementioned issues. At the core of our measure,
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Fig. 1. Illustration of the Tolerant Edit Distance (TED) between two segmentations x
and y. By tolerating boundary shifts to a certain extend, shown as shadow in (b), y is
allowed to be changed to match x as closely as possible. For that, we consider
regions obtained by combining x and y, illustrated in (c). For each of these regions,
we enumerate a set of labels used by y that are within a threshold distance to all
locations inside the region (shown in curly brackets). This threshold is the
maximally allowed boundary shift. Note that in this example, the region obtained
from intersecting A and 3 can change its label to 1 (or keep 3), but not to 2, since it
contains points that are too far away from region 2. Regions with only one possible
label are too large to be relabeled by shifting their boundary and have to keep their
initial label. From all the possible ways to relabel y, the relabeling (d) minimizing
the number of split and merge errors compared to x is chosen by solving an integer
linear program.

Fig. 2. Example errors made by an automatic neuron segmentation algorithm.
Errors like merges (M) and splits (S) dramatically change the reconstructed
topology and should be avoided. Small disagreements in the boundary location (T)
are however tolerable and should be ignored during evaluation.
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which we call Tolerant Edit Distance (TED),1 is an explicit tolerance
criterion (e.g., boundary shifts within a certain range). Using integer
linear programming, we find the minimal weighted sum of split and
merge operations to transform one segmentation into another,
which is tolerably close to the ground truth. By setting the weights
of the split and merge operations to the expected effort to perform
these operations, the TED reflects the total effort needed to manually
fix a segmentation. Similar to VOI and RI, our measure does not
require voxels of the same object to form a connected component,
and can thus be applied to volumes with missing data, known object
connections via paths outside the volume, or on stitched volumes
with registration artifacts. The reported numbers are intuitive (e.g.,
time or cost effort to fix a segmentation), easy to interpret (splits
and merges of objects), and errors can be localized in the volume.
An illustration of the TED can be found in Fig. 1.

1.2. Application to neuron segmentation

To demonstrate the usefulness of our measure, we present our
results in the context of automatic neuron segmentation from
EM volumes, an active field of biomedical image processing (for
recent advances, see [9–13]). We argue that especially in this field
there is a need for explicit and intuitive error measures. Further-
more, we show how the TED can be used to train neuron segmen-
tation algorithms. Our findings (based on our previous work [14])
show that training to minimize the TED leads to higher segmenta-
tion accuracy on a range of error measures, compared to other
methods.

1.2.1. Evaluation
As it is the case in many biological applications, the criterion to

assess the quality of a neuron segmentation depends on the biolog-
ical question one would like to answer. On one hand, skeletons of
1 Source code available at http://github.com/funkey/ted.
neurons are sufficient to identify individual neurons [15], to study
neuron types and their function [16], and to obtain the wiring dia-
gram of a nervous system (the so-called connectome) [8]. In these
cases, topological correctness is far more important than the diam-
eter of a neural process or the exact location of its boundary (see
Fig. 2 for examples). On the other hand, for biophysically realistic
neuron simulation, volumetric information is needed to model
action potential time dynamics, and to understand and simulate
information processing capabilities of single neurons [17]. In this
case, the segmentation should be close to the true volume of the
reconstructed neurons. Only small deviations in the boundary loca-
tion might still be tolerable.

Currently, reporting segmentation accuracy in terms of VOI or
RI is the de facto standard [11,18,10,12,13]. Less frequently used
[9,19] is the Anisotropic Edit Distance (AED) [9] and the Warping
Error (WE) [20]. The AED is tailored to the specific error correc-
tion steps required for anisotropic volumes (splits and merges of
2D neuron slices within a section, connections and disconnec-
tions of slices between sections). The WE aims to measure the
difference between ground truth and a proposal segmentation
in terms of their topological differences. As such, the WE was
the first error measure for neuron segmentation that deals with
the delicate question of up to which point a boundary shift is
not considered to be an error. However, since the WE assumes
a foreground-background segmentation where connected fore-
ground objects represent neurons, it is only applicable to vol-
umes in which connectedness of neurons is preserved.
Furthermore, only suboptimal solutions to the WE are found
using a greedy, randomized heuristic, which makes it difficult
to use for evaluation purposes. Consequently, the WE has found
its main application in the training of neural networks for image
classification [20].

In 2 we introduce the TED as an alternative to address some of
the shortcomings of existing measures. Similar to the WE, the TED
is designed to ignore small deviations from the ground truth and
only count true topological errors, but is computed deterministi-
cally and to global optimality and does not impose constraints on
the types of volumes being compared.

1.2.2. Training
Current state-of-the-art methods for automatic neuron seg-

mentation can broadly be divided into isotropic [11,18,12,13]
and anisotropic methods [9,10,19]. Assignment models constitute
the current state of the art for the segmentation of neurons from
anisotropic volumes, as obtained by serial section EM [9,10]. These
models enumerate and price possible assignments of candidate
segments across sections of EM stacks (see Fig. 8 for an overview
and 3 for details). A final segmentation is found by selecting a cost
minimal and consistent subset of all assignments.

http://github.com/funkey/ted
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Learning in this kind of models consists of finding a function
that maps from features of the candidate segments to a cost. Cur-
rently, this function is either set by hand [21,10,22], learned from a
random forest classifier based on positive and negative assignment
examples [9,23], or found via grid-search by tuning weights of a
small number of features [24]. Except for grid-search, which does
not scale to larger sets of parameters, none of the currently used
training methods implements real end-to-end learning. In 3, we
show how to overcome these limitations by performing structured
learning on a sensible loss function. For that, we solve two sub-
problems: (1) We show how to generate a training sample suitable
for structured learning from human annotated ground truth. (2)
We introduce a loss for structured learning, which minimizes the
TED during learning.

We show that our learning framework leads to consistently
higher segmentation accuracy compared to other learning meth-
ods. Furthermore, we show that our learning framework can be
used to train on skeleton annotations without big sacrifices in
segmentation accuracy. Skeleton annotations are non-
volumetric centerlines of neurons, which are in practice much
faster to obtain.

2. Tolerant Edit Distance

In this section, we formally introduce the TED and its associated
optimization problem. We will show how to compute the TED for a
specific class of tolerance criteria, of which the boundary shift is an
example. Finally, we will analyze some of the properties of the TED
in the context of neuron segmentation and contrast them with
conventional error measures used in this field.

2.1. Definition of the TED

The TED measures the distance2 between two segmentations
x : X# Kx and y : X# Ky, where X is a discrete set of voxel (or
supervoxel) locations in a volume, and Kx and Ky are sets of labels
used by x and y, respectively. The distance is reported in terms of
the minimal number of splits and merges appearing in a relabeling
of y, as compared with x. How y is allowed to be relabeled is defined
on a tolerance criterion, e.g.., the maximal displacement of an object
boundary.

We say that a label k 2 Kx overlaps with a label l 2 Ky, if there
exists at least one location i 2 X such that xðiÞ ¼ k and yðiÞ ¼ l. If
x and y represent the same segmentation, each label l overlaps with
exactly one label k, and vice versa. Consequently, if a label k 2 Kx

overlaps with n labels from Ky, we count it as n� 1 splits. Analo-
gously, if a label l 2 Ky overlaps with n labels from Kx, we count
it as n� 1 merges. For two labelings x and y, we denote as sðx; yÞ
and mðx; yÞ the sum of splits and merges over all labels.

At the core of the TED lies a to-be-defined tolerance criterion T ,
which is meant to formalize our intuition about how a segmenta-
tion y is allowed to be relabeled. More formally, Tðy; y0Þ is supposed
to evaluate to > if y0 is a tolerated relabeling, and to ? otherwise.
With Y being the set of all labeling functions y0 : X# Ky, (i.e., all
possible labelings of X using the labels of y), we call the subset
YþðyÞ ¼ fy0 2 Y j Tðy; y0Þ ¼ >g the set of all tolerated relabelings
of y. The TED is the minimal weighted sum of splits and merges
over all tolerable relabelings YþðyÞ:
2 Note that, du
proper metric on
the term distance
TEDðx; yÞ ¼ min
y02YþðyÞ

asðx; y0Þ þ bmðx; y0Þ; ð1Þ
e to the intended tolerance to small deviations, the TED is not a
the space of segmentations. In slight abuse of nomenclature we use
here anyway, which is sometimes used synonymous for metric.
where the weights a and b represent the time or effort needed to fix
a split or merge, respectively.

Without imposing restrictions on the tolerance criteria T , the
optimization in Eq. (1) is intractable in general. Therefore, we
restrict ourselves to what we call local tolerance criteria in the fol-
lowing. A local tolerance criterion is completely defined by provid-
ing relabel alternatives Ai #Ky for each location i, such that each
relabeling y0 using any label y0ðiÞ 2 Ai is tolerated. More formally,
T localðy; y0Þ ¼
^
i2X

y0ðiÞ 2 Ai: ð2Þ
One example of such a local tolerance criterion is the boundary
shift up to a distance threshold h, which we illustrate in Fig. 1(c).
For this tolerance criterion, Ai of a location i comprises the union
of labels of all other locations that are within a h distance from i.

For local tolerance criteria, Eq. (1) can be solved with the fol-
lowing integer linear program (ILP):
min
v

asþ bm ð3Þ
s:t:
X
l2Ai

v i l ¼ 1 8i 2 X ð4Þ
X
i2X
v i l � 1 8l 2 Ky ð5Þ
akl � v i l � 0 8i 2 X : xðiÞ ¼ k ð6Þ
akl �
X

i2X:xðiÞ¼k
v i l � 0 8k 2 Kx 8l 2 Ky ð7Þ
sk �
X
l2Ky

akl ¼ �1 8k 2 Kx ð8Þ
ml �
X
k2Kx

akl ¼ �1 8l 2 Ky ð9Þ
s�
X
k2Kx

sk ¼ 0 ð10Þ
m�
X
l2Ky

ml ¼ 0 ð11Þ
At the core of this ILP are binary indicator variables
v ¼ ðv i l 2 f0;1g j i 2 X; l 2 AiÞ to indicate the assignment of label
l to location i. Constraints Eq. (4) and Eq. (5) ensure that exactly
one of the labels gets chosen for each location and that each label
of y has to appear at least once. Further, we introduce binary vari-
ables akl that indicate the presence of a joint assignment of label k
from x and label l from y0 at at least one location. With constraints
Eqs. (6 and 7) we make sure that each akl ¼ 1 if and only if there is
at least one location i 2 X such that xðiÞ ¼ k and y0ðiÞ ¼ l. To count
the number of times a label k 2 Kx is split in y0, we further intro-
duce integers sk 2 N. These counts equal the number of times k
was matched with any other label minus one, which we ensure
with constraints Eq. (8). Analogously, we introduce integers ml

and constraints (9) for merges caused by label l in y0. The final split
and merge numbers s and m are just the sums of the label-wise
splits and merges, ensured by Eq. (10 and 11).

Once the optimal solution of this ILP has been found, the vari-
ables akl can be used to determine which labels got split and
merged, and thus to localize errors.



Fig. 4. The Tolerant Edit Distance (TED) on an automatically generated reconstruc-
tion as a function of the tolerated boundary shift.

Fig. 5. Comparison of error measures between the original ground truth (left) and
three modifications. For the boundary shift experiment, the labels of the ground
truth were dilated by 10 nm. For the split and merge experiments, ten random
locations were chosen where the ground truth neurons were manually split or
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2.2. Discussion of the TED

2.2.1. Parameters
As formulated above, the TED and the boundary shift tolerance

criterion introduce three parameters: a and b to score differently
split and merge errors, and a threshold h for the maximally permit-
ted boundary shift.

a and b can be set straightforwardly as the effort or time needed
to fix a split or merge error. This depends on the concrete applica-
tion and the tools available to proof-readers. Since a study of the
time needed to fix segmentations is beyond the scope of this paper,
we will proceed as follows: We set a ¼ b ¼ 1 for this discussion, so
as to count the number of errors. For the experiments presented in
(3), we will set a ¼ 1 and b ¼ 2 to reflect that merges are usually
more difficult to fix than splits. Note that, up to scale, the TED will
be the same for equally scaled a and b. We allow them to be set
independently anyway to obtain directly a time-to-fix estimate if
a and b reflect time.

The distance threshold h might not be as obvious to set. Setting
this value requires us to find an answer to the unpleasant question
until which point a deviation from the ground truth is just a toler-
able dent in a segment or a real error that should be counted. A sin-
gle threshold alone is unlikely to provide an answer to this
question. But, following a popular philosophy, we think that expli-
cit is better than implicit. By explicitly setting this value, we
achieve two things: First, we know exactly how to interpret the
values measured by the TED. Second, we confront ourselves with
the aforementioned unpleasant question, which we hope will
encourage us to come up with more elaborate tolerance criteria,
tailored to the needs of specific applications.
merged, respectively. Both RI and VOI assign better scores (i.e., higher for RI, lower
for VOI) to the split and merge experiments than to the shift experiment. The TED
boundary shift tolerance was set to 20 nm and thus counts only the true
morphological errors as false splits (FS) and false merges (FM).
2.2.2. Shift of object boundary
To illustrate the behavior of different error measures in the case

of object boundary displacements, we created a simple artificial 1D
labeling consisting of two regions. In Fig. 3, we show the errors of
segmentations obtained by shifting the boundary between the
objects. It can clearly be seen that TED assigns the same numbers
(one split and one merge error) as soon as a given tolerance
criterion is exceeded (0:025 in this example), regardless where
the error happens. This is the desired outcome for applications
like neuron segmentation, where it is important to count the
number of topological errors regardless of how many voxels got
affected.
Fig. 3. Comparison of Rand index (RI), variation of information (VOI), and Tolerant
Edit Distance (TED) as functions of object boundary displacements. Given a ground
truth labeling X, the error measures are plotted as functions of the split position
between two objects in a reconstruction Y . It can clearly be seen that TED assigns the
same numbers (one split and one merge error) as soon as a given tolerance criterion
is exceeded (0:025 in this example). VOI is in bits (lower is better) and 1-RI is 1minus
the ratio of agreeing pairs over all pairs (lower is better). The advantage of the TED is
that it explicitly counts the topological errorsmade, regardless where in the segment
they occur. Furthermore, small boundary shifts are not counted at all, whereas for RI
and VOI their contribution can not be distinguished from real errors.
2.2.3. Influence of distance threshold
In order to study the effect of the threshold distance for bound-

ary shifts, we used an automatic segmentation result3 and evalu-
ated the TED for varying thresholds. Results are shown in Fig. 4.
The TED reveals that most of the errors occur within the range of
about 50 nm, corresponding to about 12 pixels in the x-y-plane of
this dataset. Depending on the biological question, those errors
might be tolerable. In the same plot, we show the VOI of the closest
tolerable relabeling to the ground truth under the given boundary
shift threshold (i.e., the equivalent of Fig. 1 (d) on the proposal seg-
mentation). From this example, we can see that the errors <50 nm
contribute quite significantly with 0.23 bits to the total VOI of
0.886, and thus can shadow true topological errors.

2.2.4. Comparison to RI and VOI
To demonstrate the main differences between TED and conven-

tional error measures, we compare RI and VOI against TED for three
manual modifications of the ground truth labeling of [25], shown
in Fig. 5. For the 10 nm shift experiment, we dilated the boundaries
of neurons in the ground truth by 10 nm. For the splits and merges
experiment, we split and merged neurons at 10 randomly selected
locations, respectively. It can be seen that the small shifts of object
boundaries can have a significant contribution to the measures RI
and VOI, which confirms our previous observation.

2.2.5. Localization of errors
Due to the explicit tolerance criterion of the TED, errors can be

localized in the volume. In Fig. 6 we show example split and merge
3 Obtained using SOPNET [9] on a publicly available EM dataset [25].



(a) ground truth x (b) proposal segmentation y (c) found relabeling of y closest to x

Fig. 6. Errors found by the TED between a human generated ground truth x (a) and a proposal segmentation y (b), illustrated on two neurons (purple and red in ground truth).
Small errors, as the one shown in the magnification, are tolerated and consequently removed in the found relabeling of y (c). Remaining errors are considered real splits (S)
and merges (M).

Fig. 7. Runtime analysis of the TED computation on several randomized segmen-
tations of a 1000� 1000� 100 volume.
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errors detected by the TED on an automatic segmentation result for
the SNEMI dataset [26]. The boundary shift tolerance was set to
100 nm, which corresponds to 16:6� 16:6� 3:3 voxels for this vol-
umewith a resolution of 6 nm� 6 nm� 30 nm.With this setup, the
TED reveals true topological errors made by the automatic segmen-
tation method. This allows analyzing the weaknesses of a method,
which is both useful for model design as well as to communicate
the limits of what can be done with a method to neuroscientists.

2.2.6. Runtime
The runtime of the TED depends both on the size of the volumes

and their discrepancy. The less similar two segmentations are, the
more variables have to be introduced to represent the possible
relabelings. This results in larger ILPs that are in general harder
to solve.

We studied the impact of discrepancy on the runtime of the ILP
by producing randomly generated segmentations. For that, we first
created a reference segmentation by iteratively agglomerating
supervoxels of a 1000� 1000� 100 volume, using an affinity-
based scoring function to propose the next merge.4 We stopped
the agglomeration at a manually set threshold to produce � 800
components. For the randomized segmentations, we added random
noise of increasing intensity to the scoring function of the agglomer-
ation to generate more and more discrepancies compared to the ref-
erence. Each segmentation obtained this way was compared against
the reference segmentation. We measured the single-thread runtime
on a Intel(R) Xeon(R) CPU with 2.2 GHz, using Gurobi to solve the
ILP. Results for 9 noise intensities (with 20 repetitions each) are
shown in Fig. 7. It can be seen that, although the number of errors
4 We used the implementation http://github.com/funkey/waterz on a volume of
neural tissue, for which we predicted voxel-wise affinities.
goes up as high as 960, the vast majority of runs finished in less than
4 s. The number of variables in the ILPs ranged from 59,397 (most
similar segmentations) to 69;105 (most dissimilar segmentations).

These results match our observations so far and can be summa-
rized in the following way: If two segmentations are similar
enough, the runtime of the TED seems to be moderate and an exact
solution of the ILP is tractable in practice. Although we have so far
not encountered intractable instances, we can not exclude their
existence. We hypothesize that in such a case the segmentations
in question would be very dissimilar and an approximate solution
to the ILP would suffice.

3. Learning of assignment models

In this section, we demonstrate that the TED can be used as a loss
function to train neuron segmentation methods. Here, we focus on
assignment modelswhich gained popularity for the segmentation of
anisotropic volumes of neural tissue. For that, we show first how
the structured learning framework can be used to learn weights
of a generic cost function. Second, we develop a tractable approxi-
mation of the TED that can be used as loss for structured learning.
We report results on two publicly available datasets.

3.1. Assignment models

Assignment models for anisotropic neuron segmentation intro-
duce n binary indicator variables z 2 f0;1gn to represent possible
assignments of 2D neuron candidates across consecutive pairs of
sections of a volume (for an illustration see Fig. 8, more details
about assignment models can be found in [9,10]). Linear con-
straints are formulated on the binary assignment indicators to
ensure that a solution is consistent. In particular, the following
set of constraints ensures that no pair of overlapping candidates
are chosen (see also Fig. 8(g)):
X
c2C

X
zi2z!c

zi � 1 8C 2 C ð12Þ
Here, C denotes the set of all conflict cliques, i.e., sets of
candidates that are mutually overlapping and z!c all assignment
variables that link c to the previous section. For each
conflict clique C, we require the number of assignment
variables linking any candidate in it to the previous section to
be at most 1. These constraints are accompanied by the follow-
ing, which ensure a contiguous sequence of assignments (see
also Fig. 8(h)):
X
zi2z!c

zi �
X
zi2zc!

zi ¼ 0 8c: ð13Þ
Here, zc! denotes all assignments variables that link a candidate
c to the next section. Noting that the above constraints are linear in
z, we can characterize the set of consistent solutions as

http://github.com/funkey/waterz


LðwÞ
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Z ¼ fz 2 f0;1gnjAz � bg ð14Þ

where we write a � b to say that a is element-wise less than or
equal to b. Given a cost vector c for the assignment variables, the
optimal assignment vector is the solution to the integer linear
program
min h
z2Z

c; zi: ð15Þ
Without loss of generality, we assume that the cost ci for select-
ing an assignment zi is a weighted sum of features /i extracted for
this assignment:
c ¼ U �w ¼ /1;/2; . . . ;/n½ 	T �w: ð16Þ
3.2. Learning of model parameters

Using the structured learning framework [27], we find the opti-
mal w given annotated training data ð/; z0Þ. More specifically, we
use the margin rescaling variant to find the weightsw
 as the min-
imizer of
¼ kjwj2 þmax
z2Z

hUw; z0i � hUw; zi½ 	 þ Dðz0; zÞ; ð17Þ
li ¼ ð1
where k is the regularizer weight and Dðz0; zÞ is an application speci-
fic loss function. In order for this method to be successful, two prob-
lems need to be solved: (1) a representative training sample z0 has
to be found, and (2) a sensible loss function Dðz0; zÞ has to be
designed.

3.3. Training sample z0

Even apart from the difficulties in obtaining unambiguous
human generated ground truth for the neuron segmentation prob-
lem in the first place, the provision of z0 is not trivial: We have to
find a member of Z, i.e., the set of all possible assignment vectors
using the found 2D neuron candidates, that is as close as possible to
the human annotated ground truth. We have to note that the
extracted 2D neuron candidates can be imperfect and thus there
might not be a z 2 Z that corresponds to the human annotated
ground truth. Consequently, we have to accept that the training
sample z0 will only represent a best-effort solution and not the
ground truth.

In order to find this best-effort solution in a principled way, we
assign a local ground truth matching score gi to each assignment
and then select a consistent solution that minimizes this score.
Let X ¼ ½1;W	 � ½1;H	 � ½1;D	 be the set of all discrete pixel loca-
tions in a stack of sizeW � H � D. We assume a ground truth label-
ing x : X# K that assigns a unique label k 2 K to each ground truth
segment in the volume. Let uðiÞ and vðiÞ denote the section indices
that are linked by assignment zi. We denote by Ai � X the set of
pixels of section uðiÞ and vðiÞ that are merged by the assignment

zi. Similarly, let Gk
i � X denote the set of pixels that are labeled

to belong to the same region k in the ground truth, limited to the
sections uðiÞ and vðiÞ. For each pair of assignment i and ground
truth label k, we compute a similarity gk

i that rewards overlap

between the sets Ai and Gk
i and punishes set differences:
gk
i ¼ jGk

i \ Aij|fflfflfflfflffl{zfflfflfflfflffl}
overlap

� jGk
i n Aij þ jAi n Gk

i j
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

set difference

: ð18Þ
5 Since the constraints Eq. (14.) might not allow inverting single variables in
The final matching score gi of an assignment zi is the maximal
similarity with any ground truth label:
isolation, we identify a minimal group of variables that have to be inverted as well to
obtain a consistent solution: for each assignment i, we find an assignment vector
�zðiÞ 2 Z that has z – z0 and minimizes the Hamming distance to z0 .
gi ¼max
k2K

gk
i : ð19Þ
The scores gi reflect, for each assignment zi, how well it locally
fits to the ground-truth. We use these scores to find the overall
best assignment z by solving the following ILP:
z0 ¼ arg max
z2Z

hg; zi: ð20Þ
Note that this ILP is maximizing the sum of similarities for all
assignments. This way we find a consistent solution (in terms of
the constraints introduced in 3.1) that maximizes similarity with
the provided ground truth.

3.4. Loss Dðz0; zÞ

Ideally, we would use the error measure that we use to evaluate
the results of our automatic segmentation as Dðz0; zÞ. However, we
have to make sure that the maximization in Eq. (17) is still
tractable.

To this end, we suggest a first order approximation of the TED to
be used as Dðz0; zÞ: For each assignment variable zi, we estimate its
contribution li to the TED score. If zi ¼ z0i, no error was introduced
by zi and hence its contribution is 0. If, however, zi – z0i, the result-
ing segmentation will deviate from the best-effort solution. In
order to estimate the contribution of an erroneous zi to the TED
score, we compute the TED score between two segmentations yz0
and y�zðiÞ: yz0 denotes the segmentation obtained from the best-
effort solution z0 and y�zðiÞ denotes the segmentation obtained by
z0, but with z0i inverted.

5 More formally, we set
� 2z0iÞ TEDðyz0 ;yz
�ðiÞÞ and c ¼

X
i:z0

i
¼1
�li; ð21Þ
where some of the contributions li turn into rewards (negative
values) for using an assignment, i.e., when the corresponding
z0i ¼ 1. This linearization allows us to model the loss as a linear func-
tion of z:
Dðz0; zÞ ¼ hl; zi þ c � TEDðyz0 ; yzÞ; ð22Þ

which favorably plugs into Eq. (17). In fact, the loss augmented
inference problem for a givenw has the same structure as the infer-
ence problem Eq. (15) itself, for which we already know that it is
tractable in practice:
max
z2Z
hl�Uw; zi þ hUw; z0i þ c|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

constant

: ð23Þ
3.5. Results

We use two publicly available datasets for our experiments,
which we refer to as DROSOPHILA [25], which consists of two
stacks of 20 EM sections with 4� 4� 40nm resolution
(1024� 1024� 20 pixels), and MOUSE CORTEX [26], which con-
sists of two stacks of 100 EM sections with 6� 6� 30nm resolution
(1024� 1024� 100 pixels).

We split the parts for which ground truth was available into
two stacks of equal size (2� 10 sections for DROSOPHILA and
2� 50 sections for MOUSE CORTEX). For each dataset, we trained
all methods on a sample z0 (see 3.3) extracted from the first stack
and report the results on the second stack.

We trained and evaluated the assignment model implemented
in SOPNET [9], using membrane predictions from [28], and 2D
neuron candidates extracted from component trees [9]. We used
the default features implemented in SOPNET for U.
i i



Fig. 8. Assignment model for anisotropic neuron segmentation. From a stack of EM sections (a), a pixel classifier is used to predict membrane locations (b). Several, possibly
overlapping, 2D neuron candidates are extracted for each section (c), and possible assignments are enumerated between candidates of adjacent sections (d). In the model,
each assignment of candidates between two sections (f) is represented by a binary variable zi and has an associated cost ci for selecting it. By finding a cost-minimal z subject
to constraints (g) and (h) the final segmentation is obtained (e).
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3.5.1. Comparison of learning methods
We compare the structured learning method proposed in 3 to

random forests (RF) as proposed in [9,19], support vector machines
(SVM), and overlap. RF and SVM learn to score each assignment
based on positive and negative examples provided by z0 (see 3.3).
As a baseline, overlap uses the number of overlapping pixels of
an assignment across sections as score. Since these methods need
a prior for the selection of assignments, we trained RF and SVM
on a subset of the training data (5 sections for DROSOPHILA, 40
sections for MOUSE CORTEX) and used the rest to validate a prior
for RF, SVM, and overlap with a grid-search minimizing the
Hamming distance to z0.

To study the performance of the structured learning method,
we compare our loss SL-TED (see 3.4) against three baselines: SL-
Ham, SL-VOI, and SL-RI. SL-Ham uses the Hamming distance of z
Table 1
Comparison of segmentation results of different learning methods on two anisotro
to z0 for Dðz0; zÞ. SL-VOI and SL-RI use the same linear approxima-
tion scheme we developed for the TED (see 21), but with VOI
and RI as error measures instead of TED. For the computation of
SL-TED, we evaluated the TED allowing boundary shifts up to
h ¼ 100 nm, with weights a ¼ 1 and b ¼ 2 to account for the fact
that merges lose geometric information and thus usually take more
time to repair than splits.

Results are shown in Table 1. We report errors for several com-
monly used measures for neuron segmentation: Rand Index (RI),
Variation of Information (VOI), Anisotropic Edit Distance [9]
(AED, note that we refer to the inter FP/FN as FS/FM), and TED.
The TED counts topological errors that are not considered bound-
ary shifts as false splits (FS) and false merges (FM). Splits of the
ground truth background label are false positives (FP) and merges
involving the reconstruction background label false negatives (FN).
pic EM datasets.



Table 2
Reconstruction results on MOUSE CORTEX after training on different ground truth
types: volumetric uses the original ground truth, skeleton a skeletonized version.
We show false splits and false merges (FS and FM), false positives and false
negatives (FP and FN), and an estimated time-to-fix (TTF), as reported by the TED
measure.
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For the time-to-fix (TTF) estimate, we again set the time needed for
fixing a split to a ¼ 1 and for fixing a merge to b ¼ 2. The struc-
tured learning methods are in general superior to overlap, RF, and
SVM, with the best results being obtained by training on SL-TED.
Training on the TED-approximation SL-TED does indeed minimize
the TTF. Furthermore, RI, VOI, and AED are minimized. Our results
also reveal interesting differences between error measures:
Although the best solutions in terms of TED have also best RI,
VOI, and AED, we see a discrepancy in the mid-field: on DROSO-
PHILA, SVM scores much better than RF in terms of VOI and slightly
better in terms of RI. However, TED on a clearly defined criterion
shows that the numbers are misleading and in fact RF has less
errors in total and shorter TTF.

3.5.2. Learning from skeletons
We show on MOUSE CORTEX that our method to find a train-

ing sample z0 allows us to train on skeleton annotations as well.
Skeleton annotations are not volumetric, i.e., instead of labeling
every pixel, only the centerline of the neuron is provided as train-
ing data. In practice, this saves a lot of manual labeling effort such
that larger volumes can be annotated. To simulate skeleton anno-
tations and compare them to the learning outcome of complete
ground truth, we skeletonized each ground truth label of the
training stack. For that, we shrunk each 2D connected component
of one label in each EM section to a single pixel at its center of
mass. Consequently, we adjusted the search for the training sam-
ple z0 to not consider the set difference term in Eq. (18). The
results of training with SL-TED on the z0 obtained this way are
shown in Table 2. Although significant, the loss in accuracy might
be compensated by the time saved to annotate only skeletons for
training.

3.5.3. Runtimes
The bottleneck of our method is the computation of the coef-

ficients li needed for the TED approximations SL-TED, since for
every binary variable in the z0 the TED has to be evaluated. For
MOUSE CORTEX and DROSOPHILA, z0 contained 277,874 and
20,890 variables, respectively. Computing the coefficients took
64.3 h for MOUSE CORTEX and 4.8 h for DROSOPHILA on a 12 core
Intel Xeon CPU with 3.47 GHz. By noting that the influence of a
single variable flip is usually local, the computation of the TED
could be limited to constant size subvolumes around the variable
of interest, such that the effort of computing the coefficients
scales linearly with the best-effort size. Structured learning with
SL-TED took 30 m for DROSOPHILA and 1 h 45 m for MOUSE COR-
TEX on 10 cores of a Intel Xeon CPU with 2.6 GHz. We used an
iterative cutting plane method6 to minimize the convex learning
6 Source code available at http://github.com/funkey/sbmrm.
objective Eq. (17) to optimality. The maximization in 17 has been
solved with an ILP to optimality (using the Gurobi solver) in each
iteration as well.

4. Conclusions

We presented the TED, a novel measure for segmentation com-
parison, which tolerates small errors based on an explicit tolerance
criterion and therefore focusses on counting true topological
errors. As such, it is suited to report an effort or time to fix
estimate.

A current limitation of the TED is the restriction to use local tol-
erance functions, e.g., a boundary shift up to a certain threshold.
More complex tolerance criteria that do not factorize over regions
are currently not expressible. Although they could in theory be
incorporated into the ILP by adding auxiliary variables, it remains
questionable whether the resulting problem is still tractable. Even
though we did not observe that empirically, it is already conceiv-
able in the current formulation that an optimal solution to the
ILP can not be found in reasonable time. This could in particular
be the case if ground truth and proposal segmentation differ a lot
and a very lax tolerance criterion is used. In these cases, approxi-
mate solutions to the proposed ILP might be worth considering.

Besides being a tool to assess the quality of a segmentation, we
also showed that the TED can be used to train a neuron segmenta-
tion algorithm.

We believe that the key for the superior performance of training
using the TED compared to other losses is the consideration of
topological errors. Previous attempts tried to correctly classify each
assignment decision and did not take into account the severity of a
wrong decision in terms of split and merge errors in the result.
Training on a TED approximation overcomes this problem.

It is worth noting that the boundary shift we used as a tolerance
criterion is just one example of how to use the TED for training and
evaluation. Depending on the biological question, more or less
deviations from the ground truth can be permitted. For example,
boundary shifts could be tolerated to an extent that locally
depends on the diameter of the ground truth neuron. In future
work, it will be interesting to investigate the use of the TED for
more general biomedical image processing problems with more
specific tolerance criteria.
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a b s t r a c t

We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual track-
ing of single-particles. It offers a versatile and modular solution that works out of the box for end users,
through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally
well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants.
TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results.
The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific
tracking problems. TrackMate is an extensible platform where developers can easily write their own
detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This
evolving framework provides researchers with the opportunity to quickly develop and optimize new
algorithms based on existing TrackMate modules without the need of having to write de novo user inter-
faces, including visualization, analysis and exporting tools.
The current capabilities of TrackMate are presented in the context of three different biological prob-

lems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage dur-
ing imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a
cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-jB essen-
tial modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage
can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis.
Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocy-
tosis in plant cells.

� 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Over the past 30 years, the biological sciences have enjoyed
tremendous advances in imaging techniques that provided new
insights into dynamic phenomena. Paramount to this significant
progress has been the development of novel imaging hardware
platforms and fluorescent probes for the visualization of biological
processes at the level of whole organisms, single cells, and subcel-
lular. The development of analysis software to extract quantitative
data on the dynamics of the processes examined by microscopy
has been equally important. In particular, single-particle tracking
software – computational tools that can follow objects in a time-
lapse movie and quantify their dynamics – are crucial for almost
any experiments involving live-cell imaging, and are a critical part
of the researcher toolbox.

A number of programs have been designed and have undergone
significant refinement over the past several years (some reviewed
in [1–3]) for single particle tracking of live cell microscopy images.
Furthermore, the importance of tracking in bio-imaging was high-
lighted by the 2014 IEEE International Symposium on Biomedical
Imaging (ISBI) Grand Challenge [4] in which a number of the cur-
rent approaches for particle tracking were objectively compared.
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One important and significant outcome of the ISBI Grand Challenge
[4] was that there does not exist at this time a ‘‘one-size-fits-all”,
universally accurate tracking method. Many specific dynamic bio-
logical processes require their own specialized tracking tools that
can derive and exploit unique aspects of process such as the
motion or shape of the tracked objects. This makes the problem
of developing a universal tracking method even more challenging;
as the accuracy of tracking is inherently dependent on specific
parameters, one strategy that works well for a given problem is
likely to fail for another one. Therefore, for many live imaging stud-
ies, the data analysis will involve generating de novo or adapting an
existing tracking software method tailored for a single, specific
application. However, the efforts required to build tracking soft-
ware from scratch are considerable. Its development must include:
1) detection tools that can extract objects from images, 2) linking
tools that can track these objects over time, 3) visualization tools
that can overlay the raw data and tracking results, and 4) analysis
tools that can evaluate the results. Additionally, if the goal is to
develop a tracking tool that will be widely used within the research
community, the software must be user-friendly, developer
friendly, modular, validated and interoperable. Given all these hur-
dles, it is not surprising that only a few tracking algorithms exist
[5–13] that are widely available and designed to be useful for the
general needs of the greater Life-Science community.

TrackMate is a plugin within the Fiji ImageJ distribution [14] for
tracking developed with several concomitant goals. First, it focuses
on usability by providing Life-Science researchers with a turnkey
user-friendly tracking solution, fulfilling the recommendations of
[15]. It is openly available and well documented, and it houses sev-
eral detection and tracking modules that allow combining manual
and automated particle tracking approaches. TrackMate includes
several visualization tools as well as other features that facilitate
the export and exchange of data and results with other tracking
tools and/or analysis applications. Second, TrackMate has been
designed for maximal flexibility. The capabilities of TrackMate
can be tailored by the user through the addition of specific track-
ing, detection, visualization, or analysis modules. As a result,
researchers can quickly develop a solution suited for their specific
application, while taking advantage of existing modules, thus
accelerating and facilitating development. Finally, TrackMate uses
a data model that makes it a useful tool for a wide range of tracking
applications, ranging from single-particle tracking of subcellular
organelles to cell lineage analysis. Below we describe the features
of TrackMate in more detail and illustrate their application
towards three biological use cases that involve tracking and quan-
tification of dynamic live-cell events.
2. Material and methods

2.1. TrackMate: an open and extensible platform for single-particle
tracking

2.1.1. Purpose
TrackMate is a Fiji [14] plugin available through this software

platform, and therefore benefits from the facilities offered by Fiji
for image input/output and preprocessing. TrackMate’s main entry
point is an interactive plugin where tracking is performed using a
wizard-like GUI (Fig. 1). The user is guided through several stages,
each of which constitutes a step in the tracking process, choosing
what algorithm to use for detection and tracking, and then config-
uring them. The result of each step is displayed immediately. This
allows the user to readily navigate back to readjust settings should
the process output be deemed unsatisfactory. Various tools allow
for the inspection of intermediate results: a 3D view of the data
and the results can be launched, and each particle or track can
be annotated using specific colors to denote numerical values of
interest, including e.g. particle quality, estimated diameter, track
length, track displacement, etc. The use of TrackMate is docu-
mented in the Supplemental Information of this article.

Manual inspection of tracking results is critical, particularly in
practical cases when quantitative metrics are missing, to assess
the accuracy of the results. TrackMate contains several visualiza-
tion tools to ease inspection and facilitate manual curation or edit-
ing of the results. The main visualization tool (Fig. 2, top left)
overlays the tracking results on the raw image, re-using the ImageJ
hyperstack display. A 3D view of the tracking and raw data can also
be launched (Fig. 2, bottom left), based on the ImageJ 3D viewer
[16]. Finally, TrackScheme was developed to inspect the higher-
level structure of tracks (Fig. 2, top and bottom right), which is par-
ticularly handy for cell lineages. Much like a train schedule, this
tool displays the tracks based only on their links, and lays out spots
from bottom to top according to time. Each branching event gener-
ates a new vertical lane. Several synchronized views of the same
data can be launched and selecting a subset of spots and links will
highlight them in all the views.

The main view and TrackScheme also allow direct manual edit-
ing of the tracking results. Spots can be moved, added or deleted,
and linked or unlinked to tracks. In addition, the spot size can be
adjusted, and their names can be changed in batch or individually.
Two numerical features keep track of whether a spot or a link has
been manually modified.

It is actually possible to entirely skip the detection step or the
particle-linking step or both, and generate tracking results via
manual annotation. A semi-automated tracking tool facilitates
manual annotation, by creating the most likely track birthing
from a single spot. Any manual modification of the data triggers
a recalculation of all the numerical features, so that they are
always in sync with the data. Though TrackMate is only a
single-particle tracking tool, it ships with basic analysis facilities.
Numerical features are calculated for spots, links and tracks auto-
matically and kept up to date when the user manually edits
tracks. These numerical features are also used in the GUI for fil-
tering and display and can also be combined in various plots or
data tables.

2.1.2. Data model and capabilities
The data model used to store tracking results has constraints

strongly affecting what kind of event can be detected at the
particle-linking step. A linear data structure such as an array can
only represent linear tracks that do not have division or merge
events, where two objects fuse into one. Missing detections (also
called gaps) however can be handled by storing spot indices in
these arrays. In TrackMate the tracking results are represented as
a directed simple graph, where vertices are filtered spots generated
at the detection step, and edges are links generated at the particle-
linking step. This data structure is very flexible and has limited
restrictions making it well suited to single-particle tracking. A
graph is a structure where vertices (in our case spots) are con-
nected by edges (in our case links across time). In a simple directed
graph, a link cannot go from one spot to the same spot and there
cannot be more than one link between two spots. Links have a
direction going from source spots earlier in time to target spots
later in time, and links between two spots in the same frame are
forbidden. With such a data structure, a spot can be the source
and target to several links, possibly handling cell division events
and particle merging events as well.

The generality of this data structure delegates specificity to the
subsequent analysis tools. TrackMate can be configured to detect
linking, gap-closing, splitting, or merging events and makes no
assumption of the biological significance of these events. The
subsequent analysis must therefore be tailored to the biological



Fig. 1. The TrackMate user interface for automated tracking, depicting the tracking the cells of a developing C. elegans embryo. The illustration displays from top to bottom
the Fiji toolbar, the image data overlaid with the detection step result and the TrackMate GUI. The central part of the GUI contains the contextual commands for the current
tracking step. Here, the user filters out spurious spots based on a quality threshold just after the execution of the detection step. Several filters can be stacked. Detection
results, or spots, are represented as spheres with an initially constant radius. Here, the user chose a coloring scheme that reflects an estimate of the true spot radius. The
bottom part of the GUI allows the user to navigate forward and backward through the tracking steps, to see a text log of the plugin activity and to save the data at anytime.
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problem at hand. TrackMate aims at being as general as possible
and encourages end-users to tailor algorithms and analyses speci-
fic to their biological problems.

2.1.3. Performance and accuracy
TrackMate ships three classes of particle-linking algorithms. A

first class is derived from the LAP framework proposed by Jaqaman
and colleagues [7]. Base linking costs are calculated from the
square distance between particles, which makes it ideal to tackle
Brownian motion [10]. However, costs can be modulated by fea-
ture value differences, penalizing the linking of particles that are
different in intensity distribution, rough shape, etc. A convenient
GUI allows tuning these costs directly in TrackMate. A second
particle-algorithm relies on the Kalman filter [17] to tackle linear
motion. Finally, particle linking based on nearest-neighbor search
is proposed as the simplest linking algorithm.

Accuracy measurements serve as a tool for end-users to choose
the optimal algorithm for their specific biological applications. The
accuracy of the particle-linking algorithms or spot trackers offered
in TrackMate is documented in the Supplemental Information. To
establish it, we relied on the ISBI Grand Challenge single-particle
tracking dataset [4].



Fig. 2. Four views of the same C. elegans embryo being tracked in TrackMate. From left to right then top to bottom: 1. The main TrackMate view, that overlays the tracking
results on the raw image window in Fiji. The lineage of the E.a founder cell is selected and can be seen as a thick green line. 2. TrackScheme, the track visualization tool of
TrackMate. It lays out the tracks in a time oriented hierarchical graph. Here it is centered on the E founder cell division and shows the cell names and heir thumbnail. 3. The 3D
viewer here shows the TrackMate annotation with cell names. 4. Another instance of TrackScheme, with a higher-level view of the lineage. The edge color encodes the cell
displacement in all views from 0 lm (blue) to 5 lm (red). Note that all views are synchronized and share the same selection. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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2.1.4. Using TrackMate in scripts and other applications
TrackMate has a modular design that allows using its process-

ing core without relying on the GUI, in scripts or other software.
This allows TrackMate to be used for batch analysis, potentially
running on a remote cluster over many images at once. The Supple-
mental Information details the core API of TrackMate and gives
examples of scripts in Python and MATLAB. A subset of TrackMate
capabilities can also be called using the ImageJ1 macro language.

2.1.5. Interoperability with other software
TrackMate is deployed as a Fiji plugin, and therefore benefits

from and interacts with the whole ImageJ ecosystem [18], whether
for data import and preprocessing or export and scripting. Track-
Mate focuses on single-particle tracking, and therefore its end
results take the shape of tracks, collections of spots and links. It
offers basic track analysis and visualization capabilities, but speci-
fic applications are likely to require subsequent, finer analysis,
which requires TrackMate files to be interoperable with specialized
software. The Fiji distribution of TrackMate ships the files required
to import TrackMate results in MATLAB, documented in the Sup-
plemental Information. A specific tool in TrackMate also allows
the export of results to a format readable by the Icy software [8].
Alternatively, the Track Manager tool of Icy has an import filter
for the TrackMate file format.

2.1.6. Extending and reusing TrackMate
TrackMate is modular in design. Each step in the tracking

application corresponds to a module in TrackMate, organized
by common interfaces. There are seven types of TrackMate mod-
ules, including data visualization, particle detection, particle
analysis, particle linking, link analysis, track analysis, and generic
actions.

This modular design is made to be extensible. External develop-
ers can create their own TrackMate module to fill their own needs.
By extending common TrackMate interfaces, they will be inte-
grated in the GUI without distinctions from native modules. Track-
Mate discovers these new modules automatically thanks to the
SciJava annotation framework, which considerably simplifies
development. The newmodules just need to be annotated with Sci-
Java and compiled as java jar files. By dropping the jar file in the
plugins folder of a Fiji installation, they will be automatically dis-
covered by TrackMate and will appear in the GUI. Interestingly,
this completely decouples the TrackMate developers from external
developers, who can build new modules without requiring inter-
vention. The Supplemental Information documents how to write
custom TrackMate modules, covering each of the seven types of
module.

2.2. TrackMate and multidimensional imaging

TrackMate was designed for use with multidimensional light
microscopy datasets from a wide range of modalities including
simple 2D brightfield collection, 3D TIRF imaging, and 4D (space
over time) laser scanning microscopy. The program was originally
developed for C. elegans lineage analysis [19], but has been adapted
and widely utilized for a number of other biological tracking appli-
cations. Given the wide number of current and possible dynamic
imaging uses for TrackMate, in this manuscript we chose to focus
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on three applications that showcase the different strengths, fea-
tures, and potential of TrackMate.

In the first case study, we examine how laser scanning confocal
microscopy (LSCM) induced phototoxicity affects cell division in C.
elegans. By utilizing TrackMate-based cell lineage tracking we can
determine whether different imaging doses or techniques can
influence the normal cell lineage. This example shows how Track-
Mate can handle automatic analysis and manual correction. There
are many use cases where a fully automatic strategy is not possible
due to factors such as variable signal to noise (SNR) in the images.
TrackMate was specifically designed to handle 3D data such as this
and do automatic – and manual – based cell lineage tracking and
analysis.

In the second example we use TrackMate to investigate the
ability of NEMO (NF-jB essential modulator), a key component
of the NF-jB signaling pathway, to assemble into punctate struc-
tures, that we refer as ‘‘NEMO dots”, upon cell stimulation by
cytokines, and how phototoxic effects alter this process even at
low illumination doses. NEMO has been shown to be involved
in many physiological processes and we have shown that its
assembly into punctate structures is an important event of the
cell response to pro-inflammatory cytokine stimulation [20].
The formation of NEMO dots is a transient event that occurs
rapidly and can be tracked in 2D (using SDCM). A key need for
this application is the ability to use the tracking results in sub-
sequent analyses using biophysics methods, revealing the key
ability of TrackMate to interoperate with other analysis tools,
such as MATLAB.

The third example focuses on clathrin dynamics at the
plasma membrane of Arabidopsis hypocotyl epidermal cells. In
particular, we assess the ability of TrackMate to track the tran-
sient recruitment of fluorescent fusion protein tagged clathrin
light chain (CLC-FP) into diffraction-limited structures at the
plasma membrane and their subsequent release using Variable
Angle Epifluorescence Microscopy or TIRFM. This example illus-
trates on an important trafficking process and the utility of
TrackMate in both plant and mammalian models. This use case
demonstrates the ability of TrackMate to handle 3D spatial and
temporal data, as well as the complex modalities of VAEM/
TIRFM time-lapse images. Importantly, in this case study we
compare the ability of TrackMate to determine the lifetime of
clathrin-coated plasma membrane structures relative to
previously-published, manually-tracked CLC-FP foci. Thus, this
case study provides a useful validation of TrackMate’s tracking
accuracy.
2.3. C. elegans embryo imaging

C. elegans embryo imaging was done following the phototox-
icity assessment protocol described previously [19]. Briefly:
using a LSCM as imaging device (LSM700, Carl Zeiss, Jena,
Germany) equipped with a 63x oil NA = 1.4 objective, embryos
from the strain AZ212 were imaged at 21 �C. One acquisition
made of 41 Z-slices spaced by 1 lm were acquired every
2 min, for at least 2 h starting from the first anaphase. The pixel
dwell time was chosen to be 1.58 ls/pixel, and the laser
power varied to probe different light doses. The light dose L
is calculated as the total energy deposited on the sample for
one acquisition; that is:

L ¼ P � dt � Nequatorial � NZslices

where P is the laser power measured before the objective, assuming
nearly perfect transmittance; dt is the pixel dwell time, Nequatorial is
the number of pixels in the embryo equatorial plane, and NZslices is
the number of Z-slices scanned for a single acquisition.
2.4. NEMO punctate cluster imaging

GFP-NEMO-expressing cells were prepared for live imaging as
in [20] and plated in 3.5 cm diameter glass-bottom petri dishes.
Two different SDCMs were used for imaging: an UltraVIEW ERS
and an UltraVIEW VOX (Perkin-Elmer), based onCSU-22 and CSU-
X1 spinning-disks (Yokagawa) respectively, with a EM-CCD camera
with a peak QE around 60% (C9100-50, Hamamatsu) and 92%
(ImageEM-X2, Hamamatsu), again respectively. A single plane
close to the coverslip was chosen for imaging, and the cells were
imaged with a PlanApochromat 63x 1.4NA oil objective at 2 frames
per second, at 37 �C and 5% CO2, using a 488 nm laser line and fil-
ters suited for the detection of the GFP emission. Stimulation by IL-
1 was done at a final concentration of 10 ng/mL.
2.5. VAEM imaging of PM-associated Clathrin dynamics

Sterilized stable transgenic A. thaliana ecotype Wassilewskija
seeds expressing functional Clathrin Light Chain 2-GFP under con-
trol of its native promoter [21] were plated on 0.5x Murashige and
Skoog Basal Salts 0.5% agar. After vernalization at 4 �C for 72 h,
plates were incubated under continuous light at 22 �C for 3 h
before being grown in the dark for 5 days. Seedlings were imaged
by Variable Angle Epifluorescence Microscopy as described [22]
using a Nikon N-STORM Microscope with a motorized TIRF illumi-
nator and Andor iXon Ultra 897 EMCCD camera. Using the TIRFM
mode and the 100x oil NA = 1.49 objective, 2D time-lapse
sequences were taken at 2 frames per second with 488 nm laser
excitation.
3. Results

3.1. C. elegans embryo cell division synchrony and cell cycle length are
robust against photodamage

3.1.1. Methods
We recently proposed a quantitative method to assess the pho-

totoxic impact of imaging devices [19]. C. elegans embryos have an
invariant development pattern, with minimal variation across indi-
viduals for the cell lineage, their organization in space, and their
division timing [23]. At a temperature of 21 �C and without exter-
nal perturbation, an embryo develops into a 50-cells organism in
two hours measured from the first anaphase. If this process is
imaged using a fluorescent strain labeled for nuclei [24], harsh
imaging conditions will perturb the normal development and hin-
der normal progression. For intermediate light doses, this mani-
fests as a delayed development, and less than 50 cells are found
after two hours of imaging. We exploited this effect to quantify
phototoxic impact: the phototoxic light dose is defined as the
energy per acquisition that yield an embryo with 25 cells after
2 h of development at 21 �C. To measure this dose, several embryos
were imaged in controlled conditions, changing only the illumina-
tion power. The number of cells after 2 h of imaging was plotted
against the light dose, and the phototoxic light dose was derived
by a fit by a sigmoidal curve [19]. This protocol characterizes the
phototoxic impact of an imaging device when imaging 3D speci-
men over several hours, revealing sensitivities to subtle phototoxic
effects. With the laser line used for excitation and the fluorescent
labeling of the sample, it reports mainly the fluorescence-
sensitized phototoxicity and is not sensitive to any thermal effects
that occur for near IR/IR excitation.

While this protocol benchmarks the performance of a system
through a bulk measurement on a specimen, determining how
photodamage affects specimens requires even deeper insights.
We investigate here whether specific cells of the lineage have
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different sensitivities to photodamage. This involves building the
comprehensive cell lineages, as the embryos sample different light
doses. While this task is nowadays greatly facilitated by the
pioneering work of other groups [5,25–27], the tools they offer
are unfortunately not applicable to our problem. Indeed, the
images we generate have a quality that is not adjustable: it is the
product of the sensitivity of the system tested and of the light dose
probed. For a strong illumination power, the fluorophore quickly
bleaches, while this does not happen or not as much for low inci-
dent power. A single dataset therefore may have movies with a
very low and constant SNR for low light doses, and movies begin-
ning with a strong SNR that quickly decays until the images are no
longer exploitable for high light doses (Supplemental Movie 1). To
add to this quality discrepancy, a single image of the embryo also
shows varying SNR as the Z position of cells vary. Indeed, as we use
an oil objective, the image quality quickly deteriorates as the focus
moves away from the coverslip. This problem is classically solved
by varying the illumination power as the focus moves [25], but
again this is not applicable to our study since we want to use a con-
stant illumination power throughout a single experiment.

It is important to note that the extremely high variability in
image quality, both in space and time and within a single dataset,
is there by construction. As the illumination power is an input vari-
able in our experiments we do not have the liberty to tune it in
order to reach a desirable image quality. Rather than develop a
highly customized solution that would deal with this issue, we
exploited the ability of TrackMate to combine automated and man-
ual annotation approaches. Each movie was first segmented auto-
matically for the cells, and the spurious or missing detections were
manually corrected. The curated detection results were then
tracked automatically, and tracking mistakes were again manually
corrected. The data model of TrackMate directly allows generating
lineages, cell divisions being represented by branching events with
two links emerging from a mother cell spot. Cells were named fol-
lowing the Sulston and Horvitz convention [28]. Movies with
quickly decaying SNR were those for which the automated process-
ing was the less successful, but because they correspond to the
toxic light doses, they yielded few cells and the manual correction
Fig. 3. Cumulative cell division time for the AB lineage, measured from the first anaphas
division time is defined with mean and standard deviation taken over the times of divis
followed over time. Nine embryos were tracked to sample a wide-range of light doses. Wh
are shown as annotations in the plot.
took little time. On average, a single acquisition of at least 2 h of
development could be lineaged in less than an afternoon. The data-
set presented here includes 9 acquisitions, collected on a LSCM,
using light doses ranging from 13 lJ/stack to 650 lJ/stack, covering
situations where no to extreme phototoxic effects can be observed.
A full lineage from this dataset is presented in Supplemental Fig. 2.

3.1.2. Results
The phototoxicity threshold as defined in [19] was found to be

320 lJ/stack for this LSCM, to be compared with the much larger
value around 5 mJ/stack that can be measured for
epifluorescence-based systems [19,29]. For values well below the
phototoxicity threshold, up to 200 lJ/stack, the development of
the embryo was virtually non-perturbed (Supplemental Movie 1
and Fig. 3). We investigated how photodamage impacts cell divi-
sion synchrony and cell cycle length. To do so, we focused on the
AB descendants. At 21 �C without imaging, the first two hours of
the AB lineage was made of 5 successive divisions that gave rise
to 32 descendants. Each of these 5 divisions was well synchronized
across sibling cells [23], which allowed for the definition of the
cumulative division time for ABnx, the time measured from the first
anaphase to the nth division in the AB lineage. This time was char-
acterized by then mean and standard deviation over the n times of
division of the n ABnx cells into 2n AB(n + 1)x daughter cells.

We first investigated whether or not this synchrony is per-
turbed by harsh illumination. The cumulative division time is
reported in Fig. 3 as a function of the incident light dose. We
observed that division synchrony of the AB lineage resists
phototoxicity well, as indicated by the very low standard deviation
on the division time. Even for disruptive light doses, the AB
descendants all divided within 10 min of their siblings. However,
close to the phototoxicity threshold and beyond, some cell
divisions did not happen at all. This shows that cell division
synchrony is robust against photodamage, and more robust than
cell division itself.

Surprisingly, cell cycle lengths only vary weakly with light
doses. For doses lower than the phototoxicity threshold, the cumu-
lative time to get a specific AB descendant division stayed roughly
e in C. elegans embryos up to two hours as a function of the incident light dose. Cell
ion of all ABnx cells into AB(n + 1)x. A column in this plot represents a single embryo
en a particular cell division does not happen, the assessed reason and notable events
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Fig. 4. a. NEMO dots dynamics over time, measured from the addition of IL-1
(10 ng/mL final), comparing high and low illumination intensities. Each line counts
the number of NEMO dots in a single cell. b. Empirical cumulative distribution (CDF)
of the linear velocity of NEMO dots for several cells after stimulation by IL-1. Linear
velocity is defined for each NEMO dot as the median of all its 3 min-displacements
divided by a 3 min interval. Each line is the CDF for all the NEMO dots of a single
cell. The blue line, termed ‘Controls’, plots the CDF of the linear velocity of
unspecific dots undergoing Brownian motion in a non-stimulated cell.
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constant (Fig. 3). The observation of [23] in non-invasive condi-
tions still holds, and cell cycle length follows roughly a geometrical
sequence, even if it increases slowly with incident light dose. Over
the whole range of light doses sampled, the cell cycle time of the
AB progenitor doubled. However, this immediate lengthening of
division times is not the main feature of phototoxic effects. The
embryo development was hindered because for large incident
doses, some subsequent cell divisions did not happen. Looking clo-
sely at the AB lineage, we saw that for 289 lJ, the AB4x ? AB5x cell
division took place, but the cells were blocked in metaphase. For
324 lJ, the AB3x ? AB4x did not happen. For 504 lJ, the embryo
stopped after ABx ? ABxx and for 648 lJ, only the first division of
AB happened before the embryo died. Phototoxic effects on a LSCM
manifest as a brutal development halt at a certain time depending
on the light dose. Before this time is reached, the cycles of cell divi-
sions proceed more-or-less normally.

3.1.3. Discussion
The robustness of the synchrony and of the order of cell divi-

sions indicates that there probably is not a cell-dependent sensitiv-
ity to phototoxic effects, at least for the AB descendants.
Photodamage affects all cells in a similar manner. Embryonic cell
proliferation involves rapid cell divisions through short cell cycles,
most of which lack G1 and G2 phases [30]. By construction, our
phototoxicity assay targets damage to the nucleus and is likely to
cause first DNA damage. But the embryonic cell division of misses
robust checkpoints for DNA damage [30], which explains why the
lengths of cell cycles only depend weakly on incident light doses.
The catastrophic arrest of cell divisions might reflect harsher dam-
age affecting the structural components of the mitosis. Therefore,
even if we introduced as a sensitive specimen for our phototoxicity
assay, our photodamage readout probably misses subtle DNA dam-
age happening at low doses.

3.2. NEMO-IKK structures dynamics is adversely affected by subtle
phototoxic damage

NEMO (NF-jB Essential Modulator) is a critical component of
the NF-jB signaling pathway and is a key actor of many physiolog-
ical processes such as immune response, inflammation, cell sur-
vival and proliferation [31]. We recently observed that upon
stimulation by various cytokines, NEMO rapidly and transiently
assembles into punctate structures [20]. Thanks to cell lines that
stably express GFP-NEMO, this process can be investigated via
imaging and single-particle tracking, opening the way to analyzing
these structures via biophysical methods complementary to bio-
chemical approaches. Using imaging we quantified the dynamics
of the NEMO dots, showing that they experience a rapid turnover
of their molecular content, and that they are anchored in the vicin-
ity of the cell membrane [20]. These results are critical to our
understanding of the process leading to the activation of the
NEMO-IKK complex, as a part of the NF-jB pathway.

A downside of fluorescence microscopy as described in our first
case study is that it can be invasive, altering the physiology of the
organism and/or cells due to phototoxicity, thereby affecting the
process understudy. In particular it can affect the motion dynamics
of organelles, potentially including the NEMO dots. We investigate
here how phototoxicity impacts these dynamics and leads to an
erroneous conclusion on the motion model of the NEMO subcellu-
lar structures.

3.2.1. Results
Two SDCMs were used to image human cells constitutively

expressing GFP-NEMO, each with a different light dose range
(low intensities: 14–40 lJ, high intensities: 500–700 lJ). Upon
the addition of the IL-1 cytokine (10 ng/ml final), the NEMO
superstructures appear as bright, punctate, diffraction-limited dots
over a fainter background. These dots were tracked using
TrackMate until they disappeared. Subsequently, the tracks were
imported and analyzed in MATLAB. Their time-course is displayed
on Fig. 4a. In the case of high intensities, fewer dots were observed
per cell, but they remained for a much longer time. For low
intensities, they appeared and disappeared in less than 15 min
measured from the addition of IL-1, whereas for high intensities,
they lasted for more than 30 min.

Their motion characteristics also differed under high versus low
intensity illumination. In both cases, they display random rapid
movements, but over longer time scales in the case of high inten-
sities, many of them display large, directed movements, sometimes
over 10 lm, preferably oriented towards the nucleus (Supplemen-
tal Movie 2). At low intensities, they all remained within 2 lm of
their average position for their whole lifetime (Supplemental
Movie 3). The movement of the NEMO dots was quantified and
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expressed in terms of linear velocity, a measure of how far a parti-
cle moves over a period of time. Here the linear velocity of a NEMO
dot was defined as the median of all the 3 min-displacement of this
dot, divided by an interval of 3 min.

The empirical cumulative distribution function for all cells is
displayed in Fig. 4b. For low intensities, the linear velocity is in
the range of 0.11–0.23 lm/min (4 cells, 939 NEMO dots). This
value is in the range of the linear velocity measured on dots of a
control, non-stimulated cell, 0.14 lm/min (1 cell, 17 dots). These
dots are non-functional NEMO aggregates typically found in cells
highly expressing GFP-NEMO, and undergo Brownian random
motion. For high intensities the linear velocity ranges from 0.45
to 0.56 lm/min (2 cells, 325 NEMO dots), with some values as
large as 2 lm/min. The fact that under high illumination NEMO
dots can have large directed movements suggests that they are
actively transported in these conditions.

To confirm this observation, we performed mean-square-
displacement (MSD) analysis comparing NEMO dots under high
and low illumination intensities. The fit of the log-log plot the
MSD curves yielded a factor a that determines whether the dots
are bound to a fixed structure (a < 1), freely diffused (a � 1) or
actively transported (a > 1) [32]. We retained dots for which the
R2 value of the log-log fit is larger than 0.8. The values of all dots
were pooled together for a cell, and we assessed the motion type
for this cell using a t-test. We found that for high intensities, all
cells have a a value significantly larger than 1 (p = 10�3–10�4),
indicating that NEMO dots are actively transported. However, the
a value for cells illuminated with low intensities have a a value
significantly lower than 1 (p < 10�10).
3.2.2. Discussion
The range of low versus high illumination intensities in this

study is dictated by the sensitivity of the cameras equipping the
two different microscope systems utilized. One was equipped with
a very sensitive camera with high quantum efficiency, allowing for
using low intensities to track NEMO superstructures. The other
camera had a more modest quantum efficiency, and prompted
for larger illumination intensities. However, even the high intensi-
ties used on the second system are not extremely high in absolute
value. The phototoxic light dose measured on this system is about
21 mJ [19]. The equivalent light dose used in this study extrapo-
lated over 2 min was in the range 60–80 mJ. We therefore used
an illumination dose larger than the phototoxic threshold accord-
ing to [19], but well within an order of magnitude. For low inten-
sities, the equivalent light dose over 2 min is in the range 8.4–
24 mJ. This difference was enough to separate results in two com-
pletely different categories, one of which is evidently corrupted by
artifacts.

The NEMO dots display longer dynamics in cells exposed to
high light intensities, which we attribute to artifactual cell stim-
ulation by light-induced stress. The large displacements observed
at high intensities are likely to be due to cell shrinking in
response to phototoxicity. The dots may follow the cell mem-
brane as the cell shrinks and display an artifactual motion, which
resembles a directed movement towards the nucleus. An erro-
neous interpretation of these artifacts is that following stimula-
tion by IL-1, NEMO is assembled into membrane-associated
superstructures that are subsequently actively transported
towards the nucleus. However, biochemical studies showed that
the NEMO structures are most likely anchored to the cell mem-
brane for their entire lifetimes, which is confirmed by MSD anal-
ysis when under non-invasive imaging condition [20].
Phototoxicity effects can give artifactual results that yield erro-
neous conclusions and strongly compromise interpretation of
the role of a molecule.
3.3. VAEM imaging of plasma membrane-associated Clathrin dynamics
in Arabidopsis

Secretory and endocytic membrane trafficking are essential
processes critical for growth and development of multicellular
organisms including cell expansion and division, as well as
responses to abiotic and biotic signals. Bidirectional trafficking of
cargo materials between the discrete organelles of the secretory
and endocytic pathways is primarily mediated by vesicular carri-
ers. Clathrin, a vesicle coat protein complex, is responsible for
cargo selection and formation of vesicles that traffic between the
plasma membrane, endosome, trans-Golgi, and the vacuole
[33,34]. Clathrin-coated vesicle (CCV) formation involves the tem-
poral and highly ordered assembly of proteins following a poorly
understood nucleation event. After this site-selecting initiation
event, cargo begins to cluster together on the membrane through
the action of various cargo receptors and adaptor complexes speci-
fic to each trafficking pathway (i.e. the adaptin 2, AP2, and TPLATE
complexes in clathrin mediated endocytosis, CME, in plants [35]).
While well characterized in yeast and mammalian systems, less
is known of the molecular underpinnings of clathrin-dependent
vesicle formation and targeting in plants.

Clathrin-mediated endocytosis (CME), cytoskeletal dynamics,
and other events occurring at the cell cortex have been successfully
imaged in mammalian and other systems using Total Internal
Reflection Fluorescence Microscopy (TIRFM [36]). Likewise, TIRFM
has been utilized to image molecular events at or adjacent to the
cell cortex in plant cells [37]. However, plant cells are non-ideal
samples for TIRFM analysis owing to the thickness of plant cell
walls, which can exceed 500 nm, the theoretical limit of TIRFM illu-
mination, and the non-uniform refractive index of cell walls due to
variations in composition between cell types and stages of devel-
opment. Additionally, plants do not readily adhere to glass sur-
faces, which, in combination with frequently non-uniform
geometries of plant tissues, make the task of imaging molecular
events at the cell cortex in single plant cells by the critical angle
illumination necessary for TIRFM challenging. To accommodate
these technical hurdles, Variable Angle Epifluorescence Microscopy
(VAEM), which utilizes sub-critical laser angles to achieve oblique
illumination of the plant cell cortex, was developed as an alterna-
tive application of TIRFM systems [22]. Essentially, the incident
angle of the excitation beam utilized for VAEM is adjusted to gen-
erate an uneven ‘wedge’ of illumination radiating from the optical
axis. The result is the maintenance of high S/N ratio at greater illu-
mination depths (>1000 nm) than are achievable with TIRFM [22].

3.3.1. Results
Here, we employ TrackMate to analyze VAEM data of fluores-

cently tagged clathrin foci at the cell cortex to compare the soft-
ware’s particle tracking capabilities of manually chosen plasma
membrane PM-associated clathrin foci with completely manually
processed data. Representative images demonstrate CLC2-GFP foci
labeling of PM foci and larger cortical Golgi structures
(Fig. 5a and b) in Arabidopsis hypocotyl epidermal cells. The cla-
thrin containing PM foci have a more uniform fluorescence and
are diffraction limited in size compared to the larger CLC2-GFP
labeled Golgi structures, displaying the characteristic fluorescence
profile of sites of CME previously described [21]. Three indepen-
dent hypocotyls were imaged and time-lapse images from each
were analyzed manually and semi-automatically with TrackMate
(Supplemental Movie 4). A histogram comparing the manual and
TrackMate data displays the distribution of clathrin PM foci life-
times observed by both methods (Fig. 5c). PM-associated clathrin
foci lifetimes determined manually and via TrackMate range from
5–50 s and 7–55 s, respectively. The medians of the manual and
TrackMate generated lifetimes are 20.5 s and 22.3 s, respectively.
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Fig. 5. VAEM imaging of clathrin foci in Arabidopsis hypocotyl epidermal cells. a.
Single image of a time-lapse movie following the lifetime of clathrin foci. The
fluorescence signal shows clathrin foci along with larger, brighter Golgi structures.
Yellow line: profile used for the kymograph in b. Scale bar: 2 lm. Blue and orange
arrowheads denote PM- and Golgi-associated clathrin, respectively. b. Kymograph
extracted along the yellow line in a. The brightness has been adjusted to better
show the clathrin focus, saturating the display of the large Golgi structure. Yellow
arrows: start and end of the clathrin focus lifetime, determined manually. Blue and
orange arrowheads denote PM- and Golgi-associated clathrin, respectively. c.
Histograms of lifetimes for clathrin foci.
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The average foci lifetimes for each individual hypocotyl did not
vary significantly and the average foci lifetimes for manual and
TrackMate data over all samples are 21.7 ± 10.5 s (mean ± standard
Table 1
User contributed modules of TrackMate v3.4.0.

Module name Module type Purpose

Linear tracker Particle-
linking

Linking transported particles by extrapolating t

Batch mode Plugin Runs TrackMate in batch, reading configuration
Binary detector Spot

detector
Detect spot using intensity thresholding and Im

CSV exporter Generic
action

Export tracks to CSV file

SQLite exporter Generic
action

Export tracks to SQLite database

Multi-channel
intensity
analyzer

Spot feature
analyzer

Compute spot mean intensity in up to 10 chann

Find maxima Spot
detector

Detection based on region growing, reimpleme
command

Trajectory classifier Plugin Classify 2D tracks into normal diffusion, subdif
directed/active motion by a random forest appr

Close gaps Generic
action

Close gaps in tracks by creating spots in missing
of their coordinates
deviation, N = 64) and 24.2 ± 11.6 s (N = 59), respectively. The Stu-
dent’s t-test and the Kolmogorov–Smirnov test gave both gave p-
values greater than 0.1.

3.3.2. Discussion
Previously, the lifetimes of CLC2-GFP positive PM foci were

determined by manual identification and quantitation of the fluo-
rescence intensity of individual foci across a time-lapse series of
images; a laborious and potentially biased process plagued by
the difficult and somewhat arbitrary determination of where
events begin and end. TrackMate helps in addressing these issues
through its ability to follow a single focus throughout its whole
lifetime from a single manual annotation. The slight difference
between the manual and TrackMate average clathrin foci lifetimes
is most likely due to TrackMate’s capability to detect foci beyond
what the human eye can discern via the quality threshold param-
eter. Despite this slight difference, the Student’s t-test and the Kol-
mogorov–Smirnov test indicate that the manual and TrackMate
average lifetime values and data distribution do not statistically
differ from each other for PM associated Clathrin foci. This suggests
that the software’s tracking capabilities are compatible with man-
ual tracking of clathrin dynamics at the PM. A number of laborato-
ries studying clathrin and clathrin accessory proteins involved in
plant CME have found the average lifetime of clathrin-associated
PM foci to range from 17.7 s to 24 s, corroborating the average life-
time of clathrin foci at the PM found both manually and semi-
automatically with TrackMate [21,38,39]. Inevitably, TrackMate’s
ability to objectively track foci is dependent upon parameters
defined by the operator thereby introducing some level of bias into
the results. Nevertheless, these parameters can be universally
applied across all samples, eliminating unintentional precision
errors and eye-constrained selection of track termination. Taken
together, this data demonstrates the utility of TrackMate in allevi-
ating a previously laborious analysis of dynamic events in micro-
scopy data.

4. Discussion

TrackMate has been used in protein motility studies [40,41],
molecular motor tracking [42], axonal transport [43], sperm cell
tracking [44], Golgi bodies tracking [45] in plants, wound healing
[46], bacterial biofilm micro-rheology [47], cell movement on
stiffness-patterned substrate [48], cell tracking in zebrafish [49]
and drosophila [50] embryos, infected cells tracking [51], colloid
Author Location

heir velocity Ronny
Sczech

https://github.com/chicoronny/
RonnyTrackMate

from a file
ageJ particle analyzer

els Benoit
Lombardot

https://github.com/tinevez/
TrackMate-extras

nting ImageJ Find maxima Thorsten
Wagner

http://imagej.net/Find_maxima_
(TrackMate_module)

fusion, confined diffusion and
oach

https://github.com/
thorstenwagner/ij-trajectory-
classifier

frame by linear interpolation Robert
Haase

Integrated into TrackMate v3.4.0

https://github.com/chicoronny/RonnyTrackMate
https://github.com/chicoronny/RonnyTrackMate
https://github.com/tinevez/TrackMate-extras
https://github.com/tinevez/TrackMate-extras
http://imagej.net/Find_maxima_(TrackMate_module
http://imagej.net/Find_maxima_(TrackMate_module
https://github.com/thorstenwagner/ij-trajectory-classifier
https://github.com/thorstenwagner/ij-trajectory-classifier
https://github.com/thorstenwagner/ij-trajectory-classifier
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diffusion studies [52], carboxysome lineaging in cyanobacteria
[53], magnetic bead aggregates tracking in arteries [54], diatom
motility studies [55], and stretch measurements in biomedical
materials [56]. It also enabled the biological studies presented
here, investigating the presence of a cell-specific phototoxic effect
on embryonic development, the impact of phototoxicity on the
dynamics of NEMO dot assembly and the dynamics of clathrin-
mediated endocytic events in plant cells.

This great breadth of applications highlights the vast applicabil-
ity of TrackMate. Generality often has a toll on the ability to suc-
cessfully handle very specific problems. As noted in [4], it is very
likely that some tracking challenges will require the development
of specific tracking tools. TrackMate positions itself not only as a
tool for single-particle tracking, but also as a platform to facilitate
and accelerate the development of such tools. Other developers can
port their algorithm(s) to TrackMate as a module, reusing the facil-
ities there that would otherwise consume countless and tedious
time to develop (data model, visualization, etc.). The SciJava anno-
tation mechanism used for plugin discovery ensures that new
modules can be developed and distributed without requiring any
interaction with the TrackMate developers, ensuring full autonomy
and independence. As of today, we are aware of four groups of con-
tributions made public, listed in Table 1.
5. Future directions

TrackMate was first developed as a lineage tool in C. elegans and
largely extended to deal with other problems such as intra- and
inter-cellular trafficking. As discussed above TrackMate is being
widely used, but to remain most relevant, its development needs
to continue, in order to deal with emerging data types, scales,
modalities, and analysis workflows. Many of these problems can
be readily solved by how TrackMate is developed and deployed.
By being an open source Fiji plugin that uses modular libraries
such as Bio-formats [57], SciJava [18], ImgLib2 [58], etc., it is rela-
tively straightforward to adapt TrackMate to new modalities and
use cases. However, there are some challenges that may necessi-
tate augmenting TrackMate’s capabilities. For example, it is inter-
esting to not only look at varying temporal scales but also at
varying spatial scales. As multiscale imaging methods are devel-
oped and deployed to look at process such as metastasis and cell
growth, there will need to be corresponding modules that can track
and analyze these processes over different spatial scales.

As well, TrackMate needs to continue to evolve in its interoper-
ability and ability to handle heterogeneous data, including non-
image data types. One strategy that has served TrackMate well that
we will continue to leverage is to take advantage of existing soft-
ware tools and also offer TrackMate as a flexible portable module.
In future development, we hope to have TrackMate equally acces-
sible not only as a Fiji plugin but as an Ops module [18]. The ImageJ
Ops initiative aims at producing a unifying library for scientific
image processing, and makes it widely accessible to any software
framework, not just ImageJ. The Ops framework provides unified
interfaces for basic image manipulations that can be called by
any tool using this framework. This type of modularity has already
shown considerable promise in the recent use of TrackMate in
KNIME as a SciJava process [59]. By having TrackMate in KNIME,
it is possible to create data pipelines that could integrate Track-
Mate with a number of other tools including statistical tools such
as R. With the recently developed Ops framework being driven
by the ImageJ2 and KNIME developer community, it should be pos-
sible to take TrackMate functionality even farther and to a wider
audience. In this way, other programs such as databases and even
other tracking programs could call TrackMate, much in the same
way that programs invoke scripts and other algorithms.
Recent developments in light microscopy, such as light sheet
microscopy [60], have resulted in massive datasets that in requires
large extensive annotations. These requirements will demand a
new type of data model that can support this type of extension
annotation in 2D and 3D. Our hope is that such a data model could
be driven and utilized by a number of common tools, including
TrackMate.
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This article is a review of registration algorithms for use between ultrasound images (monomodal
image-based ultrasound registration). Ultrasound is safe, inexpensive, and real-time, providing many
advantages for clinical and scientific use on both humans and animals, but ultrasound images are also
notoriously noisy and subject to several unique artifacts/distortions. This paper introduces the topic
and unique aspects of ultrasound-to-ultrasound image registration, providing a broad introduction and
summary of the literature and the field. Both theoretical and practical aspects are introduced. The first
half of the paper is theoretical, organized according to the basic components of a registration framework,
namely preprocessing, image-similarity metrics, optimizers, etc. It further subdivides these methods
between those suitable for elastic (non-rigid) vs. inelastic (matrix) transforms. The second half of the
paper is organized by anatomy and is practical in nature, presenting and discussing the complete
published systems that have been validated for registration in specific anatomic regions.

� 2017 Elsevier Inc. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
2. Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.1. Noise removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.2. Multi-resolution and down-sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.3. Image segmentation and feature detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3. Registration metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.1. Well established similarity metrics used in both rigid and non-rigid registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.2. Well established feature-based metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.3. Similarity metrics used only in rigid registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.1. Novel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.3.2. Adapted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4. Similarity metrics used only in non-rigid registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.4.1. Novel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.4.2. Adapted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4. Registration optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2016.12.006&domain=pdf
http://dx.doi.org/10.1016/j.ymeth.2016.12.006
mailto:cche@andrew.cmu.edu
mailto:tmathai@andrew.cmu.edu
mailto:jgaleotti@cmu.edu
http://dx.doi.org/10.1016/j.ymeth.2016.12.006
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth


C. Che et al. /Methods 115 (2017) 128–143 129
4.1. Optimizers used only in rigid registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.1.1. Adapted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2. Optimizers used only in non-rigid registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.1. Novel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.2. Adapted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5. Registration techniques and results by anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1. Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2. Neck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3. Breast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4. Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5. Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6. Kidney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7. Gall bladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8. Bone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.9. Prostate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.10. Fetal imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6. Discussion, Shortcomings, and future opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1. Diverse anatomy and ultrasound systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2. Interactive nature of ultrasound acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.1. Physical probe tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.2. Viewpoint specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2.3. Interactive manipulation during ultrasound acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 1
Degrees of freedom (DOF) for matrix transforms.
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1. Introduction

This article is a review of registration algorithms for use
between ultrasound images (monomodal registration). We review
the algorithms that have been published during the years 1998–
2016 to address rigid and non-rigid registration of ultrasound-to-
ultrasound only. Ultrasound imaging is a non-invasive, real-time,
and lower cost alternative to other medical imaging modalities,
providing many advantages for clinical and scientific use on both
humans and animals. Ultrasound does not expose the patient to
ionizing radiation, provides continuous real-time video imaging,
and is generally painless. Ultrasound imaging has been used in var-
ious fields of medicine such as imaging the human brain, heart,
liver etc. [1–3], and ultrasound is increasingly being used in animal
studies, including, e.g., porcine brain [4], porcine carotid artery [5],
and mice [6]. In many cases, multiple ultrasound images or vol-
umes are acquired by either free-hand scans of the anatomical
region of interest, or following a specific pattern of scanning
through the rotation and translation of the ultrasound transducer.
Regardless of scan pattern, the transducer is usually pushed into
the region of interest to obtain better signal-to-noise ratio (SNR),
deforming tissue in the process.

As ultrasound imaging produces a continual stream of images
(or volumes), it is often necessary to register these images
together, either for clinical evaluation of the entire organ, or to
be used intra-operatively [7]. Unfortunately, ultrasound images
are also notoriously noisy and subject to several unique artifacts/
distortions. Unlike multimodal registration (which typically benefits
from higher-quality CT or MRI images against which to register the
ultrasound images), monomodal ultrasound image-based registration
algorithms bring two ultrasound images into alignment with one
another based solely on the ultrasound data.

Monomodal ultrasound registration, though challenging, is
important for a growing body of work. For longitudinal studies,
ultrasound imaging avoids accumulating MRI cost, CT radiation,
and exposure to potentially harmful MRI-or-CT contrast agents.
Diagnosis may require searching for meaningful differences
between ultrasound images that were acquired months or years
apart. Population studies compare ultrasound images between
large numbers of subjects, often to disambiguate normal vs.
pathological variation. Finally, it is desirable to combine multiple
2D ultrasound slices in a single 3D dataset, either when 3D
ultrasound transducers are not an option, or when 2D transducers
produce higher quality images.

Sometimes, the 3D spatial location and orientation of the ultra-
sound probe is also known through the use of ultrasound probe
trackers [7,8]. However, probe tracking is also subject to error,
especially for lower-accuracy electromagnetic (EM) trackers. Fur-
thermore, probe tracking results in structural misalignment due
to soft-tissue deformation, which is not directly measurable by
probe tracking. For both reasons, image-based registration is still
usually required to refine the tracker’s initial registration estimate.

A registration process should result in the transform that best
(however defined) aligns an image that needs to be registered
(generally called the moving image) to a reference or fixed image.
Registration transforms are typically grouped into two major
classes: Rigid (or matrix) transformations and non-rigid (elastic)
transformations. Within these classes, each transformation type
has certain characteristic degrees of freedom (DOF). Degrees of
freedom represent the number of independent parameters that
are necessary to specify a transform, such as rotations and transla-
tions. Matrix transforms are generally of four types: strictly rigid,
similarity, affine, and perspective. All these matrix transforms
can perform rotations and translations. Similarity transforms can
also perform scaling, and affine transforms can perform all of this
plus shearing. Perspective transforms (which do not require paral-
lel lines to remain parallel) are the most free-form matrix trans-
form. These degrees of freedom for these matrix transforms,
listed below in Table 1, constrain the warp of the moving image
onto the fixed image. Closely related to matrix transforms are
Quaternions, which are also a strictly rigid transform, but use a
special representation so-as to avoid singularities in 3D rotation.
Non-rigid transforms can have many more DOFs (e.g., vector fields
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can have thousands), and can thus model elastic deformations of
anatomical objects. With so many DOFs, non-rigid transforms typ-
ically require regularization in order to maintain spatial order and
regularity. Other terms for non-rigid include deformable and elas-
tic. There are two common situations in ultrasound image registra-
tion for which a rigid-body or matrix transformation would be
used. The first situation is registration of non-deformable or inelas-
tic anatomical structures such as bone. The second situation is as a
simple (and quick) approximation when changes are small, often
for deeper organs such as liver or else to initialize a subsequent
deformable registration. On the other hand, non-rigid transforms,
such as a B-spline or Thin Plate Spine deformation, are frequently
used in ultrasound image registration due to the deformable nat-
ure of soft tissue such as organs, vessels, or the brain.

The rest of the paper is organized as follows: in the pre-
processing section, we elaborate the techniques employed for
noise reduction, as well as image segmentation and feature detec-
tion approaches to guide rigid and non-rigid ultrasound registra-
tion. Next we describe the common registration metrics used in
literature, and then we explain the different registration optimiz-
ers preferred by researchers over the years for rigid and non-
rigid registration. We then detail complete registration methods
specifically designed for different anatomical regions of the human
body, and finally we summarize with a discussion of the methods
used. This review paper is not an exhaustive review of the various
registration algorithms proposed over the years that could poten-
tially be applied to ultrasound. However, it serves to inform the
reader of the different approaches that have been popularly used
and validated for rigid and non-rigid ultrasound-to-ultrasound
registration.
2. Pre-processing

Ultrasound images typically have substantial noise, shadowing,
etc., making registration and analysis more difficult than for MRI or
CT. Multiple image pre-processing algorithms have been applied
on ultrasound images to aid registration. One common pre-
processing technique is to apply noise removal filters (including
interpolation techniques). Some registration algorithms incorpo-
rate image segmentation and/or feature extraction to guide the
registration. These registration implementations are executed
either on noise reduced ultrasound images or directly on raw ultra-
sound images. Also, if images’ intensities are scaled differently, the
image intensities can be adjusted in pre-processing, or else an
additional intensity scaling parameter may be included in the reg-
istration model [9]. Below are methods used in the literature
specifically for ultrasound-to-ultrasound registration. There are
many other preprocessing methods that may also be useful, such
as histogram equalization (intensity normalization) or bi-linear fil-
tering (edge preserving smoothing).
2.1. Noise removal

One of the most common types of noise in ultrasound images is
speckle noise, which is caused by the interference of coherent
ultrasound waves scattered by tissue within each resolution cell
(e.g., interference inside a single pixel) [10]. Although speckle can
be used as a feature (speckle-based registration is discussed in Sec-
tion 2.3), speckle degrades the quality of ultrasound images and
can lead to poor registration if neither suppressed nor explicitly
utilized. Researchers have applied different noise-removal tech-
niques before registration. One technique is to apply Gaussian fil-
tering [3–10] to reduce the speckle noise in the image by
blurring. More significantly, certain characteristics of an image,
such as edges and ridges, can be preserved and enhanced by
applying a bank of filters including Gaussian smoothing filter, the
first derivative filter (gradient operator), the second derivative fil-
ter, the Laplacian filter, and threshold operators [11]. Oscillatory
functions were used to reduce noise in [17]. Another common filter
to reduce noise, especially speckle noise, is median filtering
[18–22]. A median filter works as a non-linear low-pass filter,
assigning to each pixel the median of its local (2D or 3D) neighbor-
ing values. Median filtering can potentially preserve image details
while suppressing noise better than blurring, since the median is
robust against outliers [20]. In [20], the S-Mean filter was proposed
to more effectively remove speckle noise. This filter performs ani-
sotropic diffusion to reduce speckle (SRAD) followed by a median
filter. SRAD itself was introduced in [23] to preserve and enhance
prominent edges. When used with anisotropic diffusion, the med-
ian filter was shown to reduce speckle noise with minimal edge
degradation.

2.2. Multi-resolution and down-sampling

Multi-resolution (e.g. coarse-to-fine) approaches are common
in image optimization tasks. Compared to ‘‘regular” (single-
resolution) ultrasound registration algorithms, using a multi-
resolution strategy usually has a higher convergence radius, is
more robust to poor local optima, and progresses faster. Image
pyramids are used to down sample both the fixed and moving
images to a variety of scales, registering first on coarse, low-
resolution images and then progressively refining that registration
at increasing resolutions. In [12,15,24–27], authors used multi-
resolution strategies with specific down-sampling ratios to get bet-
ter registration results.

2.3. Image segmentation and feature detection

Many registration algorithms incorporate image segmentation
and feature extraction methods in order to guide the registration.
Segmentation approaches identify ‘‘foreground” regions of interest
(ROI) in the ultrasound images, optimizing the registration primar-
ily for those specific regions while the ‘‘background” regions are
either ignored or else registered in a somewhat under-
constrained fashion. Automatic feature detection utilizes points
of interest in the image, along with their local neighborhoods, as
key points for registration.

One example of registration based on coarse segmentation used
structural information about the interface between bone and soft
tissue. Their algorithm starts by segmenting the image using Otsu’s
thresholding method [28] to obtain a good initial, approximate
segmentation of the separation between the echogenic zone and
the shadow zone. Next, a Sobel filter is applied to detect the hori-
zontal bone interface, followed by averaging to remove noise.
Then, a fusion of the output of Otsu’s method and the detected hor-
izontal bone interface is performed. This fused result is dilated to
produce the final segmented regions of interest with structural
information [22]. An interactive live-wire segmentation algorithm
was featured in [17] where the user selected seed points on breast
and kidney ultrasound images in order to extract structural
outlines of specific objects in the images. The cost functions for
live-wire algorithm included the gradient magnitude, gradient
direction, Canny edge features [29] and Laplacian zero crossing
features. In [30], the local phase information of an image was
extracted first, and then it was segmented to obtain the boundaries
of objects with smooth borders in the images. The approach
published in [5] segmented the lumen and media-adventitial
boundaries using the B-snakes algorithm published in [31]. In
[32], a fully automated segmentation algorithm based on a Gener-
alized Hough Transform (GHT) and subsequent model adaptation
with increasing degrees of freedom was used to segment volumes



Table 2
Similarity metrics used for ultrasound registration.

Registration type Similarity metric

Standard Pixel-Based Metrics,
Well Validated for both Rigid
and Non-Rigid Transforms:

Mutual Information (MI), Normalized
Cross Correlation (NCC), Correlation
Coefficient (CC), Sum of Squared
Differences (SSD)

Standard Feature-Based Metrics
for both Rigid and Non-Rigid
Transforms:

Manual Key Points, Automatic SIFT
Feature Detection, Speckle Utilization,
Application of pixel-based methods
locally around key points

Unique Metrics, Rigid
Validation Only

Novel
Metrics:

Hellinger Distance + statistics-based
Fuzzy Local Binary Patterns (FLBP), N-
dimensional Mutual Information Matrix

Adapted
Metrics:

Correlation Ratio (CR), Sum of Absolute
Differences (SAD)

Unique Metrics, Non-
Rigid Validation
Only

Novel
Metrics:

SSD of pixel intensities + weighted SSD of
local phase information, similarity metric
Simðs1; s2Þ based on comparing attribute
vectors

Adapted
Metrics:

SIFT matching, sample variance
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of the heart of babies, and obtain a deformable model of the aortic
root in a pediatric patient. In [33], both the Endocardium at end-
diastole and the Epicardium were manually segmented.

Feature extraction can also be used to improve the accuracy of
ultrasound image/volume registration. Researchers extract edges
and texture features in ultrasound volumes to improve the
smoothness of their metric functions, which leads to better opti-
mization and results [34]. They model speckle noise as an irregular
and complex texture pattern in ultrasound images, leading them to
employ a Gabor filter bank to analyze textures. Their correspond-
ing metric function is more stable at large scales, and useful infor-
mation such as edges are well preserved [4]. In [17,35–37], SIFT
features [38] were detected and extracted from the ultrasound
images, and then utilized for matching of the ultrasound images.
In [39,40], corner features were detected based on the principal
curvature values of the Hessian matrices obtained for every pixel
in the ultrasound image.

One special feature used for ultrasound registration is speckle
noise. Speckle results from random back-scattering in a resolution
cell of the ultrasound beam, and its intensity distribution is proven
to be non-Gaussian. A fully formed speckle is known to have a Ray-
leigh distribution in the envelope detected image and Fish-Tippet
distribution in the log-compressed image [41]. Speckles as special
features can be extracted and used for ultrasound registration,
especially when misalignment is either minimal or else almost
entirely translation. [41–44]. For instance, in [41], a feature detec-
tor is employed based on statistical theoretical distributions of
fully formed speckle in an ultrasound image to generate edge
maps. They demonstrated their method to accurately register
ultrasound images with speckled data and to be more robust to
noise than standard gradient-based methods.
3. Registration metrics

A registration metric quantifies the similarity between two cor-
responding images based on a postulated transform between them.
The metric, also known as a similarity measure, is used by the reg-
istration optimizer to solve for a transform (matrix and/or dis-
placement field) that puts the two images into alignment. A
robust metric will reach either its largest or smallest possible value
when the two images are in alignment, and would ideally mono-
tonically fall away for non-perfect alignments. Generally, registra-
tion metrics can be used to establish similarity between 2D images,
3D volumes, or even 4D/5D hyper-volumes. Pixel (or voxel)-based
metrics have been developed and implemented widely in ultra-
sound registration. Pixel-based metrics compare the images’ over-
lapping pixel values [13], as opposed to other metrics which
compare non-pixel values (such as extracted features). Over the
past few decades, a great number of similarity metrics have been
proposed and developed in the medical imaging and computer
vision communities. There is not yet a solid theoretical basis for
choosing one similarity metric over another, and any givenmetric’s
performance depends significantly on other registration factors,
including (1) the optimizer and its parameters, (2) the anatomical
structures being imaged, (3) the dimensionality of the registered
object, (4) the nature of the transformation (rigid/Quaternion,
affine, non-rigid flow, non-rigid finite elements, etc.). Table 2 lists
a variety of similarity metrics that have been used for ultrasound
registration.
3.1. Well established similarity metrics used in both rigid and non-
rigid registration

Mutual Information (MI) is a popular image similarity metric
for both rigid and non-rigid medical image registration. Mutual
information was initially introduced as a similarity metric by
[45] and [46]. This metric seeks a transform that aligns two (ultra-
sound) images or volumes by maximizing their mutual informa-
tion. The metric measures how much information one variable
(image or volume) contains about the other. As [45] proposed, both
the joint entropy and the individual entropies are used to obtain
the mutual information. MI will be optimal when the individual
entropies are maximized while joint entropies are minimized. MI
is robust to outliers, and it is efficient to use in optimization, mak-
ing MI an excellent metric [19,21,24,46,47–52].

Normalized Cross-Correlation (NCC) is another widely used
similarity metric. NCC calculates the correlation between two
functions, and it is considered to work the best with mono-
modality registration between two images acquired with the same
characteristic curves (e.g., same gamma curve). The NCCmetric has
been incorporated in both rigid [22] and non-rigid registration
algorithms [53,27] with good results.

Correlation Coefficient (CC) is another prevalent similarity mea-
sure in literature. CC measures the linear correlation between two
variables, outputting a degree of correlation between 0 and 1. It is
simpler than NCC, but can be less robust to variations in imaging
parameters (slightly different characteristic curves, etc.). CC can
still perform well when used as a similarity metric in ultrasound
registration with rigid transformation [13] and non-rigid transfor-
mation [54].

Sum of Squared Differences (SSD) is perhaps the simplest stan-
dard similarity metric in image registration. This metric calculates
the sum of squared differences of pixels’ or voxels’ intensity from
both reference and moving images or volumes. As this metric
requires both reference and moving images/volumes to have the
same intensity range, SSD is best-suited for mono-modality ultra-

sound registration. SSD for rigid [55], and non-rigid [5,25,33,56–63]
registration has been discussed in recent papers.
3.2. Well established feature-based metrics

Feature Key Points were extracted using a wide variety of meth-
ods in [17,35–37,39,40], and the local neighborhoods around these
keypoints were used in order to match them together prior to reg-
istration. The combination of feature detection and localized pixel
intensity matching was a key component for the registration algo-
rithms used in these papers. Identification of other features such as
SIFT and Speckle was previously discussed in the preprocessing
section. Once features have been identified, they can be mapped
across images to create various metrics.
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3.3. Similarity metrics used only in rigid registration

3.3.1. Novel
A novel hybrid procedure for rigid registration was proposed in

[64]. The novel similarity metric is based on Hellinger distance
between the distributions in images on the global scale, and a
statistics-based extension of Fuzzy Local Binary Patterns (FLBP)
on a local scale. Many methods are proposed to measure the sim-
ilarity between LBPs, and histogram intersection is considered to
be the most common one. Since histogram intersection may yield
local minima, the Hellinger distance is preferred, which measures
the statistical similarity of two distributions. Statistical similarity
is globally precise but is locally imprecise. In contrast, the
statistics-based FLBP is globally imprecise and locally precise.
Thus, the combination of both components is desirable to achieve
a large convergence radius (global) and a precise final result (local).

Instead of using regular mutual information as similarity met-
ric, [18] introduced a high-dimensional mutual information matrix
obtained by calculating its eigenvalues. During registration, when
two images are geometrically aligned, N-dimensional MI reaches
its maximum 1. This non-negative metric can be extended to
higher dimensions so that multiple images can be registered. It
was shown to register multiple ultrasound images through
simulation.
3.3.2. Adapted
Correlation Ratio (CR) is another metric derived from Cross cor-

relation. CR was proposed in [13], and measures the functional
dependence between two variables. CR has been shown to be suit-
able for mono-modality ultrasound rigid registration [12,34].

Another similarity metric that has been used in rigid registra-
tion is the Sum of Absolute Differences (SAD). SAD is similar to
SSD, but SAD does not quadratically emphasize the pixels with
the largest intensity differences. SAD was utilized in [12].
Table 3
Optimizers used for ultrasound registration.

Registration type Optimizer

Rigid
Only

Adapted Least-Squares optimization using Horn’s Quaternion-
based method [71], Nelder-Mead Simplex method
[72], Mean-Shift optimization combined with Pow-
ell’s direction set method [34]

Non-
Rigid
Only

Novel Alpha-Expansion technique [73], Gradient Descent
[63], Variational minimization [6,51]

Adapted Nelder-Mead Simplex method [20,34–36,38,62],
Gradient Descent [37,64,73–75], Conjugate Gradient
Descent [54], Least-Squares minimization [26],
Levenberg- Marquardt optimization [75], Broyden-
Fletcher-Goldfarb-Shannon (LBFGSB) optimizer [76]
3.4. Similarity metrics used only in non-rigid registration

3.4.1. Novel
A novel similarity measure was proposed for deformable regis-

tration of ultrasound images in [65]. It is a modification of the
HAMMER algorithm, which was originally proposed in [66] for
elastic registration of brain MR images. This similarity metric uses
an attribute vector, consisting of geometric-moment invariants
that are defined on each voxel in a 3D image. The similarity mea-
sure of two voxels is obtained by comparing their attribute vector
and it is defined as:

Simðs1; s2Þ ¼
Y

i

ð1� jav iðs1Þ � av iðs2ÞjÞwi

where av i is the i th element of the attribute vector. Simðs1; s2Þ is 1
for similar voxels and zero for dissimilar voxels [9].

The similarity metric was elaborated in [30] as a compatibility
coefficient between two feature points present in the local phase
of two ultrasound images:

rpiqi ¼ a � b � c
Here, pi and qi are the set of feature points extracted from the

local phase information of each of the two ultrasound images. They
also defined Npi

a and Nqi
b with a ¼ 1;2 . . . :A; b ¼ 1;2 . . . :B to be the

points adjacent to the detected feature points. Thus,
aðpi;N

pi
a ; qi;N

qi
b Þ is the disparity in Euclidean distance between fea-

ture points p and qi, while bðpi;N
pi
a ; qi;N

qi
b Þ is the disparity in the

angle between the feature points. cðpi;N
pi
a Þ is the spatial smooth-

ness measured by the distance between pi and Npi
a .
The similarity metric was defined in [6] as the sum of two parts:
the SSD between the pixel intensities of the source and target
image, and the weighted SSD of the local phase information of
the source and target image. They worked on in vivo cardiac ultra-
sound images.
3.4.2. Adapted
In [67], the voxel intensity-based similarity metric proposed in

[68,69] was used. Here the reference volume is not selected, so the
similarity measure is the sample variance of a population, which
represents the difference from the current mean intensity x for
each voxel x in volume. The similarity metric proposed in [65]
was adopted by [8,9,50,55].
4. Registration optimizers

An optimizer plays an essential role in an image registration
framework. The goal of an optimizer is to search for the transfor-
mation that produces the best alignment of a moving image or vol-
ume with a reference image or volume. This is usually done
through the maximization of a similarity metric (metrics are
detailed in Section 3). With ultrasound, a similarity metric will typi-
cally not be robust enough to determine the best transformation
between the reference and moving images or volumes. This is because
speckle noise, along soft tissue deformation, affects the ultrasound
data, and therefore contributes to the degradation in the similarity
between two corresponding pixels or voxels. To mitigate these
effects, a cost function is normally used in registration of ultra-
sound volumes. The cost function will typically consist of a data term
that represents the similarity measurement between two voxels, and a
regularization term that penalizes unlikely deformations (especially in
non-rigid registration). An optimizer will aim to reach its optimal
goal of correctly aligning and registering two images or volumes
with minimal deformation and maximum similarity. Two desirable
properties of an optimizer are its robustness and short conver-
gence time. Therefore, a good ultrasound registration framework
will incorporate the best optimizer and metric for registration of
images or volumes. Mathematically, the cost function J to be min-
imized is defined as:

JðuÞ ¼ DðuÞ þ aS½u�

where D is the similarity measurement function, S is the smoothing
term that penalizes unlikely deformations, and u is the deformation
field or other transform applied to the moving image [61]. The influ-
ence of the regularizer depends on the value of the scalar a.

Several optimization algorithms have been developed and vali-
dated for rigid and non-rigid ultrasound registration. We discuss
the approaches proposed in the literature for rigid and non-rigid
body transformations in the following subsections, which are sum-
marized in Table 3.
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4.1. Optimizers used only in rigid registration

In a rigid registration, similarity measurement can be consid-
ered as a 6 dimensional function due to the 6 degrees-of-
freedom transformation. Since it is not possible to search through
the entire parameter space exhaustively, initial parameter estima-
tion is essential for the efficiency and accuracy of the optimization
process.
4.1.1. Adapted
The most widely used optimization algorithm for rigid only

ultrasound image registration is the simplex method of Nelder
and Mead [19–22,55,72,77,78] due to its robustness and computa-
tional efficiency. Inspired by the concept of a simplex, the Nelder
and Mead algorithm is commonly used to find the minimum or
maximum of an objective function in a multidimensional space.
Before determining the initial simplex, normalization is needed
for both translations and rotations so that the unit step in param-
eter space is approximately the same as the displacement in the
spatial domain. In order to avoid finding local minimums and max-
imums, the size of initial simplex should be greater than the unit
dimension. To stop the optimization process, two conditions are
considered. The first one is when the size of the simplex is smaller
than a unit hypercube in the parameter space. The second one is
when similarity measurement meets a pre-defined value [47].

In [34], a mean-shift based optimization algorithm was used
with the Powell’s direction set method [79]. There are two advan-
tages to using the mean-shift algorithm: (1) the local fluctuation is
eliminated on the surface of similarity function effectively, and (2)
the optimization process can be robust and accurate using a multi-
resolution approach. In a high dimensional space, the computa-
tional load will be reduced by using Powell’s direction set method
[34].

Another optimizer that has been validated with rigid body
ultrasound registration is the least squares method [80]. Yip
et al. [81] used Random Sample Consensus [82] (RANSAC) to reject
outliers, and identify the best transformation for registration. The
least squares optimization was performed using Horn’s
quaternion-based method [71].
4.2. Optimizers used only in non-rigid registration

4.2.1. Novel
In [25], the registration energy cost function was modeled using

Markov Random Fields (MRF), and optimized using a parallelized
alpha-expansion technique [73]. In [30], a fuzzy correspondence
matrix was used in addition to the compatibility coefficient (see
Section 3.3.1) in order to estimate the transformation that maps
points in the moving ultrasound image to the fixed ultrasound
image. The transformation was defined using the Thin Plate Spine
(TPS) model. In [63], the optimizer of choice was a gradient descent
optimizer with an automatic step-size update. This paper proposed
a unique way of estimating the global spatio-temporal deformation
field for a sequence of images using this optimization method and
a B-spline parametric model. In [61], the cost function contained a
diffusion regularizer, and a variational minimization approach was
utilized in order to register the volumes together. Here, the cost
function was minimized by applying calculus of variations to
obtain a non-linear partial differential equation, which was then
solved using the modified fix-point iteration with incremental
updates being regularized [83]. A variational framework was also
used in [6] to solve the problem of non-rigid ultrasound registra-
tion. Here, the cost function consisted of a data term and a smooth-
ness term, which could be minimized for gradient descent using
the Euler-Lagrange method. The Euler-Langrange equations that
were derived in their paper were solved using an alternating min-
imization approach.

4.2.2. Adapted
In [48], first semi-automated approach was proposed (the

authors did not know of any previously published semi- or fully
automated algorithm) for non-rigid registration of ultrasound
images of the breast. The optimizer used in this paper was the
Nelder simplex algorithm [72]. The user clicked 3 control points
in the moving image, and the optimizer tried to maximize the MI
between the fixed and the moving images. The three control points
were used to defined a standard rigid transform (rotate-translate),
and the rigid transform defined an additional control point. The
four control points were then used to estimate a full affine trans-
form. Finally, the affine transform defined more points, which
could in turn be used to estimate repeated TPS warps.

In [24], a sub-volume based volumetric registration (SURE)
algorithm was proposed, which divided the three-dimensional vol-
ume into subvolumes. They then proceeded to compute the simi-
larity of each subvolume to the target volume within a search
window, while discarding non-matching subvolumes. Finally, they
computed the translation only vector to target volume, and then
used the TPS model to estimate the deformation field between
original position of subvolumes and new position of subvolumes.
The optimizer they used in this paper was the Nelder-Mead sim-
plex method [72]. In [47], a modified version of the Nelder-Mead
simplex method proposed in [21] was utilized.

In [50], the MIAMI-FUSE registration software [84] was utilized
for non-rigid ultrasound volume registration of the breast. Initially,
affine registration was done by manually selecting control points.
After initial alignment, at least one additional control point was
needed for elastic registration using TPS. The location of other
grayscale voxels in the moving volume was interpolated using
TPS, and the three-dimensional volumes were registered. Nelder-
Mead simplex method [72] was used for optimization of the cost
function.

In [54], a Bayesian regularization framework for non-linear reg-
istration was proposed with the minimization achieved through
conjugate gradient descent. The deformation field was generated
by fitting a cubic tensor product B-spline approximating mesh.

A non-rigid registration algorithm was proposed in [49] that
operated by optimizing a cost function made up of global and local
motion models. The global motion model described the motion of
the brain using an affine transform. The local motion model was
based on the B-spline free form deformation (FFD). They used a
multi-resolution approach in order to estimate the FFD from
coarse-to-fine levels. They used the gradient descent optimizer
proposed in [74].

In [85], an approach was put forth which was an extension of
the demons algorithm. They added an extra force to the optical
flow equation of the demons algorithm called the inertia force.
By adding this extra term, they were able to achieve better non-
rigid registration results over the traditional demons algorithm.
The optimizer used here was a second order gradient descent on
the SSD criterion.

A near real-time algorithm (RESOUND) was put forth in [27]
that incorporated the minimization a cost function comprised of
a similarity term based on NCC, and a smoothness term. The defor-
mation field was estimated using cubic B-splines. The optimization
was done by taking the analytic derivative of NCC, and using a
stochastic gradient descent algorithm as in [86,87]. The algorithm
was implemented over a three level multi-resolution framework.

An algorithm was implemented in [67] that registered an entire
4D (3D + time) sequence of liver ultrasound volumes in a group-
wise fashion, and avoided bias towards a specifically chosen refer-
ence time point. The algorithm utilized the 4D FFD B-spline model



Table 4
Representative ultrasound registration systems for specific anatomy.

Anatomy Reference Registration
type

Accuracy of results

Head [34] 3D Rigid 92% successful registration
Neck [64] 2D Rigid 5.1 pixel registration error
Breast [50] 3D Non-Rigid 1.2 ± 0.9 mm
Heart [53] 2D Non-Rigid 0.5 ± 1.535 pixels
Liver [62] 2D Non-Rigid 6.9700 pixels SSD error
Kidney [30] 2D Non-Rigid 0.131 pixel RMS error
Gall bladder [13] 3D Rigid <10 mm registration error
Bone [22] 3D/4D Rigid <1 mm registration error
Prostate [51] 3D Non-Rigid 1.96 ± 0.85 mm registration

error
Fetal

imaging
[25] 3D Non-Rigid 0.78 ± 0.633 mm mosaicking

error
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in order to estimate the deformation field. The optimizer that was
used in this paper was the stochastic gradient descent algorithm
[86,87], and the parameters for this algorithm were from the elas-
tix toolbox [88]. The algorithm was executed using a multi-
resolution approach.

A multi-resolution approach was proposed in [4] that had an
embedded multi-grid registration framework. This meant that they
divided a volume into partitions at each level. At each of the vari-
ous scales, the image was divided into specific sub blocks within
the same grid, and the deformation field was estimated for that
block in the grid. Then, for a cube at each grid level, a 12-
parametric increment field was estimated. The deformation field
at the grid level was then used to initialize the deformation field
over the next grid level. The optimizer used here was a multi-
grid reweighted least squares minimization algorithm employing
an iterative Gauss-Seidel scheme [26].

In [5], an algorithm for Intra-Vascular Ultrasound (IVUS) image
registration was implemented by transforming the images from
image coordinates into polar coordinates. Here, the registration
energy functional to be minimized comprised the sum of squared
differences of intensities, and the sum of squared differences in
radial gradient in each pixel of the region of interest (ROI). The
minimization was done based on the Levenberg-Marquardt opti-
mization [75]. Bicubic B-splines were used to represent the defor-
mation field.

In [52], a non-rigid registration algorithm was proposed which
incorporated a twisting and bending model. They used the Powell
optimizer [77,79] to estimate the six parameters of the rigid trans-
formation along with the six parameters of the non-rigid trans-
form. This optimizer did not require the calculation of gradient
parameters in order to perform the optimization, and hence it
was a suitable choice in this paper.

In [17], two methods were utilized to extract point pair corre-
spondences describing the shape of objects in ultrasound images.
First, they employed a global shape extraction scheme through seg-
mentation to generate point pair correspondences between the
fixed and moving images. Then, they used SIFT feature detection
andmatching to obtain salient feature points that defined the struc-
ture of the object of interest in the image. They used the point pair
correspondences generated from the two aforementioned steps in a
Bayesian framework, where the displacement field was estimated
using MAP framework. The fast optimization algorithm proposed
in [89] to obtain the velocity field by simple scale-space convolu-
tion was used for registering the images together.

Similarly, the method proposed in [35] utilized SIFT-based fea-
ture detection and matching at a single scale to register volumes.
The volumes were acquired with small displacements, which
allowed them to adopt a Register-To-Global strategy where fea-
tures detected in newly acquired volumes were registered to a
combination of features from all previous volumes encountered
in the sequence. Their group-wise registration scheme was faster
than [36,37], while maintaining accuracy.

The algorithm in [62] used the diagonal (d), vertical (v), and
horizontal (h) components of the discrete Meyer wavelet trans-
form to generate energy maps. They applied wavelet decomposi-
tion through a multi-resolution approach, minimized an energy
functional with SSD as similarity metric and diffusion regularizer.
They used the calculus of variations to minimize the energy func-
tional leading to the Euler-Lagrange equation. This equation was
approximated as a linear system by a finite difference method.
The fixed point iteration method was used to find the approximate
solution of this linear system.

Inter-session registration of three-dimensional trans-rectal
ultrasound (TRUS) was achieved in [51]. They utilized two different
non-rigid algorithms for comparison of performance. The first was
surface-based registration using an initial ICP-based rigid
registration of three-dimensional TRUS volumes followed by non-
rigid registration using TPS [90]. The second was image-based
registration with a block matching approach [91] with MI as the
similarity metric, followed by non-rigid registration using cubic
B-splines. The optimizer that was used here was the Broyden-Fle
tcher-Goldfarb-Shannon (LBFGSB) optimizer [76].

A non-rigid registration algorithm was proposed in [60] to track
the mitral valve annulus in three-dimensional ultrasound volumes.
The optimizer that was used in this algorithmwas the LBFGSB opti-
mizer. The deformation field was estimated using three-
dimensional third order B-splines. A multi-resolution approach
was used.

An algorithm was proposed in [32] that registered volumes
through the use of a model-based segmentation. They created a
model of the aortic root by manually segmenting three-
dimensional volumes of pediatric patients. Next, they acquired
new 4D echo images of pediatric hearts, from which two three-
dimensional volumes were extracted, and set as the reference
and target respectively. These volumes were segmented using
the deformable aortic root model that was generated. Next, 3D
meshes were generated from the segmentations of the three-
dimensional volumes. The three-dimensional meshes were then
registered using TPS, thereby registering the extracted three-
dimensional echo volumes.

A two-step approach was developed in [53] for elastic registra-
tion of IVUS frames in a sequence. First, rigid registration was per-
formed to align coronary artery IVUS ultrasound B-scans. Then, the
lumen contour was detected, and the IVUS image was transformed
into polar coordinates. Finally, TPS interpolation was used for elas-
tic registration of the lumen contour points detected between suc-
cessive two frames in a sub-sequence.

An alternating minimization strategy that was proposed in [92]
was utilized in [93] for the registration of pre- and post-biopsy vol-
umes. The cost function that was proposed in [54,66] was modi-
fied, and utilized in [14–16,65,70], and there was no optimization
performed in these implementations.

5. Registration techniques and results by anatomy

Ultrasound imaging has been used to image different organs of
the human body over the past decades. In the following sections,
the results of ultrasound-to-ultrasound (monomodal) registration
algorithms are discussed based on the type of organ or anatomy
for which they were implemented and validated. Table 4 summa-
rizes some key anatomic results and references.

5.1. Head

In [34], a novel robust method is presented to register three-
dimensional ultrasound fetal head images. They used Gabor filters
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to extract textures and edge features, the correlation ratio as the
similarity metric and a mean-shift based optimizer with Powell’s
direction set method. As a result, the proposed method was able
to achieve a successful registration rate of 92% for large initial
misalignment with correlation ratio metric. The algorithm was
evaluated on two three-dimensional volumes of fetal heads.
Among the different metrics that were used, CR performed the best
with the greatest capture range.

The minimization of a non-rigid three-dimensional registration
problem in a multi-resolution framework was done in [4]. The
optimizer used in this approach was a multi-grid reweighted least
squares minimization algorithm employing an iterative Gauss-
Seidel scheme. They had applied their embedded multi-grid and
multi-resolution approach on artificially deformed volumes of
the brain of an 8-month old baby, and on the brain of a pig. With
their regularized Perona and Malik (P&M) approach, they achieved
a better metric score, lowering the baby-brain Mean Squared Error
(MSE) metric score by about 5.7% and reducing the angular error by
about 2.3% to 13.8�, in comparison to an approach that does not
incorporate any multi-scale framework.

A non-rigid registration algorithm designed in [49] that was
applied to three-dimensional ultrasound volumes acquired before
and after opening the dura of the brain of two patients with brain
Fig. 1. Deformation field. Top: left: Ultrasound volume after opening the dura, middle
volume before opening the dura. Bottom: left: Deformation field for affine registration
without the affine component. (Medical Image Computing and Computer-Assisted Inte
Tumours Acquired during Neurosurgery, Volume 2879, 2003, p414, Marloes M. J. Letteb
Berlin Heidelberg 2003, with permission of Springer.) [49].
tumors. The algorithm operated by optimizing a cost function
made up of global and local motion models. They used the gradient
descent optimizer proposed in [74] to minimize the cost function.
The results before and after registration were compared; the regis-
tration method involved an affine plus free-form deformation
(FFD) with a control point spacing of 4. They computed the overlap
of the segmented tumor volume before and after registration, and
found that the overlap after registration jumped to 96% from a 76%
overlap before registration. Fig. 1 shows results that the affine reg-
istration is applied to ultrasound volume after opening the dura.

A near real-time registration algorithm (RESOUND) was devel-
oped in [27] for registering ultrasound volumes acquired before
and after the resection of brain tumors. The algorithm incorporated
the minimization a cost function comprised of a similarity term
based on NCC, and a smoothness term. The optimization was done
by taking the analytic derivative of NCC, and using a stochastic gra-
dient descent algorithm as in [86,87]. The deformation field was
estimated using cubic B-splines. The authors validated their results
by manually providing corresponding landmarks in each volume,
and compared the volumes before and after registration by esti-
mate the mean target registration error. The initial error before
registration was 3.7 mm, while the error after registration dropped
to 1.58 mm.
: Ultrasound volume after opening the dura + affine registration, right: Ultrasound
, right: Deformation field for free-form deformation (control point spacing 4 mm)
rvention – MICCAI 2003, Non-rigid Registration of 3D Ultrasound Images of Brain
oer, Peter W. A. Willems, Max A. Viergever, and Wiro J. Niessen, � Springer-Verlag
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5.2. Neck

In [64], a novel hybrid procedure for registering envelop
detected radio frequency ultrasound data of human neck was pro-
posed, using global statistics and local textural features. Globally,
Hellinger distance between distributions is utilized and Fuzzy
Local Binary Patterns (FLBP) is used on a local scale to perform reg-
istration. As a result, the median registration error on five datasets
using the methodology put forth in [64] is much lower than other
similarity measures such as SSD and NCC.
5.3. Breast

In [54], a fully automated non-rigid registration algorithm was
proposed for registering free-hand ultrasound volumes of the
female breast. A Bayesian regularization framework incorporating
a block matching scheme was developed with the minimization
achieved through conjugate gradient descent. The deformation
field was generated by fitting cubic tensor product B-spline
meshes. The boundary of the cysts and background texture were
well preserved in in vivo ultrasound images of the breast after reg-
istration. Fig. 2 shows results of registering and compounding two
sweeps of a breast fibroadenoma.

A sub-volume based volumetric registration (SURE) algorithm
was developed in [24], which was used to register synthetically
warped ultrasound volumes of the female breast. The algorithm
used the TPS model to estimate the deformation field between
original position of subvolumes and new position of subvolumes.
The optimizer they used in this paper was the Nelder-Mead sim-
plex method [72]. The synthetic deformations that were applied
to a reference volume were in the range of 1.5–2.5 mm, and this
was reduced by over 85% when using their registration algorithm.
This was significantly higher than the 59% and 50% reduction in
deformation obtained by using rigid and affine transforms
respectively.

In [48], the first semi-automated approach was proposed for
non-rigid registration of ultrasound images of the breast. The opti-
mizer used in this paper was the Nelder simplex algorithm. TPS
warps were computed by having the user manually click control
Fig. 2. Registration and compounding of two sweeps of a breast fibroadenoma. (a)
Sweep 1 (the reference image). (b) Sweep 2 (the floating image). (c) The result of
registering Sweep 2 to Sweep 1. (d) Compounding of Sweep 1 and 2 after
registration. � [2002] IEEE. Reprinted, with permission, from [54].
points in the moving image, and using the optimizer to maximize
the MI between the fixed and the moving images. They prove that
their algorithm achieves a 27% increase in mutual information by
using the nine point TPS solution over the full affine registration.

In [50], the MIAMI-FUSE registration software [84] was utilized
for non-rigid ultrasound volume registration of the female breast.
Initially, affine registration was done by manually selecting control
points. After initial alignment, at least one additional control point
was needed for elastic registration using TPS. The location of other
grayscale voxels in the moving volume was interpolated using TPS,
and the three-dimensional volumes were registered. Nelder-Mead
simplex method was used for optimization of the cost function.
The algorithm successfully registered automated whole breast
ultrasound (ABU) volumes, and reduced the mean registration
between manually annotated landmark points after registration
to 1.2 ± 0.9 mm.

In [85], an approach was put forth which was an extension of
the demons algorithm. They added an extra force to the optical
flow equation of the demons algorithm called the inertia force.
By adding this extra term, they were able to achieve better non-
rigid registration results over the traditional demons algorithm.
The optimizer used here was a second order gradient descent on
the SSD criterion. The paper showed that the SSD ratio computed
over multiple iterations dropped quickly and was lower than com-
parable registration algorithms, thus indicating successful
registration.

5.4. Heart

In [78], a registration framework was proposed to register real-
time volume ultrasound images of the heart. This rigid registration
framework is based on mutual information and uses Nelder-Mead
method as an optimizer. Over a range of image sets and parame-
ters, the reported translation error range was 0.32 mm to
2.58 mm, and the rotation error range was 0.17 degree to 9.25
degree.

In [19], a technique was developed to temporally align two
sequences of pre-stress and post-stress three-dimensional images
for stress echocardiography, followed by a spatial registration pro-
cess. This registration uses mutual information as similarity metric
and a downhill simplex method as optimizer. As a result, working
with three-dimensional stress echocardiography it is shown that
this registration framework can potentially ‘‘improve the diagnos-
tic accuracy of stress testing”.

In [5], an algorithm for Intra-Vascular Ultrasound (IVUS) image
registration was implemented by transforming the images from
image coordinates into polar coordinates. Here, the registration
energy functional to be minimized comprised the sum of squared
differences of intensities, and the sum of squared differences in
radial gradient in each pixel of the region of interest (ROI). The
minimization was done based on the Levenberg-Marquardt opti-
mization [75]. The mean and standard deviation for the X error
with a control point spacing sequence (CPSS) of 30–20, and a
weighting coefficient of 0.5 was 0.023 ± 0.156 pixels.

In [63], the paper proposed a unique way of estimating the glo-
bal spatio-temporal deformation field for a sequence of left ventri-
cle ultrasound images using a gradient descent optimization
method and a B-spline parametric model. In the ultrasound
sequence containing realistic noise, the geometric error in pixels
was 1.265 pixels (corresponding to 5% displacement). This result
suggests that the spatio-temporal algorithm works better than a
previously published algorithm in [94].

In [52], a non-rigid registration algorithm was proposed which
incorporated a twisting and bending model to register three-
dimensional volumes of the carotid artery. They used the Powell
optimizer [58,60] to estimate the six parameters of the rigid
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transformation along with the six parameters of the non-rigid
transform. The overall mean and standard deviation for the mean
registration error between the fixed and moving volumes was
1.03 ± 0.23 mm for non-rigid registration over 1.50 ± 0.50 mm for
rigid registration.

A variational framework was used in [6] to solve the problem of
non-rigid ultrasound registration. Here, the cost function consisted
of a data term and a smoothness term, which could be minimized
for gradient descent using the Euler-Lagrange method. The Euler-
Langrange equations that were derived in their paper were solved
using an alternating minimization approach. The SSD between the
fixed and moving images after intensity-based registration algo-
rithm was 37.37 pixels, while the SSD after intensity + local phase
information based non-rigid registration was 34.76 pixels.

An algorithm that registered three-dimensional volumes
through the use of an aortic root model-based segmentation was
described in [32]. The performance of the registration algorithm
was illustrated by the use of the Canny edge detector to extract
boundaries in the image sets, and it was clear that the algorithm
did well in aligning the edges and boundaries in the images.

A multi-resolution non-rigid registration algorithm was devel-
oped in [60] to track the mitral valve annulus in three-
dimensional ultrasound volumes. The optimizer that was used in
this algorithm was the LBFGSB optimizer. The deformation field
was estimated using three-dimensional third order B-splines. The
tracking algorithm produced an average root mean squared error
(RMSE) of 1.96 ± 0.46 mm over all the datasets. The same non-
rigid registration algorithm was also used in [33,56–59].

A two-step algorithm for elastic registration of IVUS frames in a
sequence was developed in [53]. First, rigid registration was per-
formed to align coronary artery IVUS ultrasound B-scans. Then,
the lumen contour was detected, and the IVUS image was trans-
formed into polar coordinates. Finally, TPS interpolation was used
for elastic registration of the lumen contour points detected
between successive two frames in a sub-sequence. The elastic reg-
istration error was measured between five image pairs and com-
pared against the iterative closest point (ICP) algorithm [95]. The
mean and standard deviation of the elastic registration error of
one image pair was 0.519 ± 1.464 pixels, and this was lower than
the ICP-based registration error 0.778 ± 2.327pixels.
5.5. Liver

In [55], a methodology for image-based real time tracking for
4D ultrasound data was proposed using rigid image registration
to deduce the positioning of each ultrasound frame in a global
coordinate system. They used sum of squared differences (SSD)
as similarity metric, a non-linear Nelder-Mead algorithm as opti-
mizer and validated their methodology using liver scan. As a result,
they proved that their method is able to provide results in agree-
ment with previously developed magnetic-based tracking tech-
nique, which is widely used in clinical industry nowadays.

In [20], a registration framework was developed using mutual
information to register 2-D liver images rigidly. Dividing rectangles
and Nelder-Mead method are used as optimization algorithm. The
results demonstrate that their automatic registration framework
can reach minimum value of 0.719 and 0.98 using DIRECT and
Nelder-Mead methods respectively after 50 iterations. Thus it is
accurate, robust and well suited for clinical applications.

In [96], a fast affine registration framework was developed to
compensate in real-time for liver three-dimensional motion/dis-
placement due to breathing using block-matching method. Nor-
malized cross correlation is used as similarity metric. The
optimization problem is mapped from non-homogeneous to
homogeneous and solved by using replicator dynamics efficiently.
Validation was performed on 91 subjects, with two ultrasound vol-
umes from each, with a ‘‘mean registration error of 1.8 mm”.

The diagonal (d), vertical (v), and horizontal (h) components of
the discrete Meyer wavelet transform was used in [62] to generate
energy maps from liver ultrasound images. They minimized the
energy functional with SSD as similarity metric and diffusion reg-
ularizer. They used fixed point iteration method as the optimizer.
The algorithm outperformed an intensity-based registration with
a SSD of 6.97 over 29.7 for the intensity-based registration.

An algorithm was implemented in [67] that registered an entire
4D (three-dimensional + time) sequence of liver ultrasound vol-
umes in a group-wise fashion, and avoided bias towards a specifi-
cally chosen reference time point. The optimizer that was used in
this paper was the stochastic gradient descent algorithm, and the
parameters for this algorithm were from elastix toolbox [88]. Their
paper showed that the average 75% percentile of the registration
error (1.0 mm) is lower than the average 75% percentile of the
bias-corrected inter-observer error (1.4 mm).

In [61], the non-rigid registration algorithm utilized a cost func-
tion that had a diffusion regularizer, and a variational minimiza-
tion approach was used to register the three-dimensional
volumes of the liver together. Here, the cost function was mini-
mized by applying calculus of variations to obtain a non-linear par-
tial differential equation, which was then solved using the
modified fix-point iteration with incremental updates being regu-
larized [83]. The gain in similarity was measured by computing the
ratio of the differences in similarity before and after registration to
the original similarity. For the SSD, the ratio ranged between
32.82% and 48.47% with an average of 40.78% for 5 datasets.

A three-dimensional registration algorithm was implemented
in [15] to register human liver volumes using a novel similarity
metric defined in Section 3.3.1 and a cost function that was pro-
posed in [54,66]. For validation of the results, they manually
selected points in the fixed and moving data sets, and estimated
the distance between them after automatic registration. The error
was about 1.4 mm. Similar results were proposed in [14,16,65,70].
5.6. Kidney

In [17], point pair correspondences were extracted that
described the shape of objects in ultrasound images, and then used
in a Bayesian framework, where the displacement field was esti-
mated using MAP framework. The fast optimization algorithm pro-
posed in [89] to obtain the velocity field by simple scale-space
convolution was used for registering the images together. They
achieved a cross-correlation (CC) value of 0.979 by using their reg-
istration algorithm over the CC value of 0.92 before registration.
See in Fig. 3.

In [30], a fuzzy correspondence matrix was used in addition to
the compatibility coefficient (see Section 3.3.1) in order to estimate
the transformation that maps points in the moving ultrasound
image to the fixed ultrasound image. The transformation was
defined using the Thin Plate Spine (TPS) model. The mean Root
Mean Square (RMS) error in a 9 frame separation was
1.31 � 10�1, compared to 2.22 � 10�1 in TPS – Robust Point Match-
ing (TPS – RPM) proposed in [97].
5.7. Gall bladder

In order to accurately perform three-dimensional spatial com-
pounding for improvement in quality of ultrasound data, [13]
adapted a previously developed multi-model CT to MRI registra-
tion algorithm to three-dimensional ultrasound data. Using a
multi-resolution approach, they developed a correlation-based
registration framework and it has been validated with gall bladder



Fig. 3. (a) The template image (220 � 160) with 135 landmark points. (b) The target image (220 � 160) with 135 landmark points. (c) The difference image between template
and target images. (d) The deformed template image using Christensen’s fluid method. (e) The difference image between d and b. (f) The deformed template image using [the]
method. (g) The difference image between (f) and (b). Reprinted from Publication [17] with permission from Elsevier.

138 C. Che et al. /Methods 115 (2017) 128–143
ultrasound data. As a result, the rigid registration translational and
rotational errors are approximately maintained within 10 mm and
10 degrees for a total of 600 B-scans.

5.8. Bone

In [22], a method was developed for 3D/4D ultrasound registra-
tion of the bone in order to reduce the invasiveness of Computer
Assisted Orthopaedic Surgery (CAOS). Normalized cross correlation
is used as similarity metric and the simplex method of Nelder and
Mead is selected for optimization process. As results, 65% of the
cases show a successful registration result with average time of
10 s for each.

5.9. Prostate

Inter-session registration of three-dimensional trans-rectal
ultrasound (TRUS) was achieved in [51]. They utilized two different
non-rigid algorithms for comparison of performance. The first was
surface-based registration using an initial ICP-based rigid registra-
tion of three-dimensional TRUS volumes followed by non-rigid
registration using TPS. The second was image-based registration
with a block matching approach with MI as the similarity metric,
followed by non-rigid registration using cubic B-splines. The opti-
mizer that was used here was the Broyden-Fletcher-Goldfarb-Shan
non (LBFGSB) optimizer [76]. The pre-registration mean target reg-
istration error (mTRE) for the whole gland was 7.36 ± 4.17 mm,
while the mTRE after non-rigid image-based registration was
1.96 ± 0.85 mm. Results are shown in Fig. 4.

For the guidance of needle biopsies in prostate image-guided
radiation therapy, an alternating minimization strategy that was
proposed in [92] was utilized in [93]. The algorithm used B-
splines in order to transform and register the post-biopsy volumes
to the pre-biopsy volumes. In [46], three registration methods
were evaluated for the registration of three-dimensional-transab
dominal ultrasound volumes. These volumes were acquired for
the setup of postprostatectomy patients during radiation therapy.
The similarity metric used for the registration was mutual informa-
tion, and since they were only estimating translations, the three
translation parameters were optimized using the adaptive stochas-
tic gradient descent optimizer [83].
5.10. Fetal imaging

In [25], the registration energy cost function was modeled using
Markov Random Fields (MRF), and optimized using a parallelized
alpha-expansion technique [73]. The clinical application of this
paper was in the construction of fetal mosaics for use in a training
simulator, the proposed method outperformed the spatial com-
pounding techniques [98] that required almost perfect alignment
between volumes. See Fig. 5.



Fig. 4. Visual assessment of three-dimensional TRUS registration. a1, b1 and c1 are post-biopsy images in three directions. a2, b2 and c2 are pre-biopsy images, and a3, b3 and c3
are the fusion images between pre- and post-biopsy images. a4, b4 and c4 are the 3D registered pre-biopsy images; and a5, b5 and c5 are the fusion images between registered
pre- and post-biopsy images. Reprinted from Publication [93] with permission from SPIE.
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6. Discussion, Shortcomings, and future opportunities

Many of the cited algorithms are freely available from the
author’s websites. An increasingly large number of registration
algorithms also have free open-source implementations in the
Insight Toolkit (ITK) [99] and its associated Insight Journal.
Although a variety of mono-modality ultrasound registration
frameworks were proposed and developed over the past few



Fig. 5. Mosaicking of multiple volumes through the registration approach in [25]. The left half shows slices from the mosaiced volume when no registration is performed. The
right half demonstrates how [the] algorithm can reconstruct the anatomy seamlessly, using multiple partially overlapping volumes. Reprinted from Publication [25] with
permission from Elsevier.
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decades, there are still shortcomings and unsolved issues in the
field of ultrasound registration.

We have not summarized how rapidly, nor in what fraction of
cases, reasonable non-rigid registration can be achieved. That
assessment should be done periodically, particularly with continu-
ally evolving software packages such as commercial software.

Opportunities for future research are suggested below.

6.1. Diverse anatomy and ultrasound systems

With all the papers that have been reviewed, most registration
frameworks were validated on human liver, cardiac and kidney
anatomical structures. Ultrasound registration on other structures
such as bone, bladder and peripheral anatomy are not as well stud-
ied, nor are animal models such as mice and pigs. More attention is
needed on less common ultrasound configurations, such as
intravascular acquisition or high-frequency small-animal imaging.

6.2. Interactive nature of ultrasound acquisition

As discussed in previous sections, ultrasound registration algo-
rithms are robust to some changes, such as gain, focal depth etc.
However, other differences remain problematic. Ultrasound is a
uniquely interactive imaging modality. The probe is freely posi-
tioned during image acquisition, allowing imaging from different
viewpoints while providing visual feedback that can be used to
physically manipulate the patient (or animal). Careful manipula-
tion and choice of viewpoint are often crucial to acquiring diagnos-
tic quality images, leading to engineering complexities and
untapped potential.

6.2.1. Physical probe tracking
In many clinical applications, free-hand ultrasound volumes are

acquired, and the position of the ultrasound probe is tracked
directly using either a magnetic or optical tracking system. How-
ever, existing probe tracking systems are somewhat restrictive
and/or not extremely accurate. More importantly, the true three-
dimensional location of the probe is obtained relative to the track-
er’s coordinate system, and not relative to the patient’s anatomy.
This can be a hindrance to the registration of images since the
internal structures of the patient’s anatomy can deform while
being imaged, but the tracker cannot accurately quantify these
movements as it provides only global motion estimates relative
to the tracker coordinate system. Prior work has been done to
instead directly track an ultrasound transducer relative to a
patient’s anatomy [8,35,100–103]. Most researchers use probe
tracking as (an often poor) surrogate for rigid registration between
consecutive images, in many cases followed by non-rigid registra-
tion as a fix-it step. However, given the under-constrained nature
of non-rigid registration, it is preferable to begin with as accurate
of a rigid transform as possible.

6.2.2. Viewpoint specific
Ultrasound allows image acquisition from different viewpoints.

Even when imaging the same anatomy without any physical
manipulation, different viewpoints will still produce different pixel
intensities for the exact same micro-volume of tissue. Other effects
such as refraction, visual occlusion and shadowing due to the com-
plex internal tissue structures can make it difficult to register ultra-
sound images acquired from different viewpoints using only
image-based approaches.

6.2.3. Interactive manipulation during ultrasound acquisition
Ultrasound imaging routinely requires physical manipulation of

the subject being scanned, typically to visually judge the effects of
compression or to push intervening anatomy out of the way. Often,
the transducer itself is used as the primary manipulation device to
compress or displace the tissue. Eventually, independent tracking
of the ultrasound probe (as discussed in Section 6.2.1) might be
used to generate good a priori models of deformation for use dur-
ing non-rigid registration algorithms. To accurately predict both
tissue compression and lateral tissue displacement, these models
should take into account both the transducer’s compression force
and the total trajectory the transducer has followed. Open prob-
lems include continuous measurement of transducer compression,
tracking the trajectory of the transducer relative to the anatomy,
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and building predictive models from these measurements. With
2D array transducers, which are capable of real-time 3D acquisi-
tion, live tracking of tissues in the images between acquired image
volumes may also provide useful preregistration.
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